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Abstract: Volcanism and tectonism are the dominant endogenic means by which planetary sur-
faces change. This book, in general, and this overview, in particular, aim to encompass the broad
range in character of volcanism, tectonism, faulting and associated interactions observed on plane-
tary bodies across the inner solar system – a region that includes Mercury, Venus, Earth, the Moon,
Mars and asteroids. The diversity and breadth of landforms produced by volcanic and tectonic pro-
cesses are enormous, and vary across the inventory of inner solar system bodies. As a result, the
selection of prevailing landforms and their underlying formational processes that are described
and highlighted in this review are but a primer to the expansive field of planetary volcanism and
tectonism. In addition to this extended introductory contribution, this Special Publication features
21 dedicated research articles about volcanic and tectonic processes manifest across the inner solar
system. Those articles are summarized at the end of this review.

Volcanic and tectonic processes have profoundly
shaped the surfaces of terrestrial planets in the inner
solar system. Even minor bodies such as asteroids
and small moons, where volcanism and tectonism
have not played dominant roles, are still affected
by fracturing and faulting as a result of other pro-
cesses like dynamic loading and gravitational col-
lapse. This Special Publication aims to encompass
the broad range in character of volcanism, tecton-
ism, faulting and associated interactions observed
on planetary bodies across the inner solar system.
By collating observations of the Earth and other
planetary bodies, the interpretations of extraterres-
trial landforms and their formational processes are
appraised in the light of our current understanding
of comparable processes on Earth.

The inner solar system comprises our star, the
Sun, and the four terrestrial planets, Mercury, Venus,
Earth and Mars, as well as Mars’ moons Phobos
and Deimos, and Earth’s companion, the Moon
(Fig. 1). Although the main asteroid belt, located

between the orbits of Mars and Jupiter, divides our
solar system into inner and outer portions, it itself
is composed of asteroidal and cometary objects of
which a large number enter the inner solar system.
Some asteroids have received attention as the result
of spacecraft flybys or orbital operations, and for
that reason are included briefly in this volume.

In this Special Publication, the journey across
the inner solar system begins at the planet closest to
the Sun. From Mercury we move to Venus; Earth
and its Moon are next, before we move yet further
out, to Mars. This celestial journey terminates at
the main asteroid belt (Fig. 1).

The first part of this introductory chapter high-
lights the current knowledge of, and recent discov-
eries regarding, volcanic and tectonic features and
their formational processes on the Moon, Mars,
Mercury and Venus. The second part is dedicated
to summarizing the major conclusions of articles
presented in this volume. In its writing, we have
sought not to compose a comprehensive review
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per se but, rather, to provide a detailed introduction
to the diversity of observed volcanic and tectonic
processes present throughout the inner solar sys-
tem, from which the interested reader may explore
further – and farther.

Mercury

Until very recently, Mercury (Fig. 1c) was the most
enigmatic of the inner solar system’s planets. Its
proximity to the Sun rendered telescopic obser-
vations of Mercury from Earth difficult, and the
planet’s location in the Sun’s gravity well chal-
lenged mission designers. It was not until NASA’s
Mariner 10 spacecraft flew past the planet in the
1970s that the surface of Mercury was imaged
directly for the first time and, even then, only a
single hemisphere was observed. Those early data
showed the planet’s surface to resemble superfi-
cially that of the Moon, with ancient, cratered plains
interspersed with expanses of younger smooth
plains. Yet, unlike its larger terrestrial counterparts,
Mercury does not have primary volcanic features,
such as the giant shield volcanoes that dominate
the Tharsis province on Mars. The volcanic charac-
ter of Mercury, therefore, remained an open ques-
tion until the planet was visited by the MErcury
Surface, Space ENvironment, GEochemistry, and
Ranging (MESSENGER) mission. However, the
tectonics of Mercury were readily visible from the
outset of its exploration by spacecraft. Long, cliff-
like escarpments were observed across the Mariner
10 hemisphere, with wrinkle ridges akin to those
in lunar maria populating the planet’s smooth plains
units. Even so, the spatial extent, styles and amount
of tectonic deformation of Mercury are questions
that could only be fully explored from orbit. This
section describes the current state of knowledge of
Mercury’s volcanic and tectonic character, places
these findings in the context of how our understand-
ing of the innermost planet has evolved, and high-
lights key aspects of the geological development
of Mercury that have yet to be answered.

Volcanism

The three flybys of Mercury by the Mariner 10 space-
craft in 1974–1975 returned images that raised the
prospect of volcanism on the innermost planet.
Smooth plains deposits were identified across the
approximately 45% of the planet observed during
that mission; some workers interpreted their large
volumes, together with their embayment relation-
ships with, and spectral distinctiveness from, sur-
rounding terrain, as evidence for a volcanic origin
for these deposits (Murray et al. 1975; Strom et al.
1975; Dzurisin 1978; Kiefer & Murray 1987;
Robinson & Lucey 1997). Yet, others argued that
Mercury’s smooth plains units were morphologi-
cally similar to lunar highland plains, which were
shown to have been emplaced as fluidized ejecta
(Wilhelms 1976; Oberbeck et al. 1977). The pro-
venance of smooth plains on Mercury therefore
remained unresolved until the three flybys of the
MESSENGER spacecraft in 2008–2009 (Fig. 1c).

Smooth plains. MESSENGER imaged almost the
entire surface of Mercury during its flybys, and
showed the smooth plains to be a globally present
unit, the majority of which is volcanic in nature
(Fig. 2). This inference is based on superposition
relations indicative of the sequential embayment of
impact basins and ejecta, as well as spectral homo-
geneity but colour variation, partially buried impact
structures, and thicknesses of hundreds to thou-
sands of metres (Head et al. 2008, 2009; Denevi
et al. 2009). Observations made after MESSENGER
entered orbit about the planet in March 2011 have
allowed for the spatial extent of Mercury’s smooth
plains to be quantified (Denevi et al. 2013): these
plains are now known to occupy some 27% of the
surface of Mercury (Fig. 2). Notably, the single
largest contiguous smooth plains unit on the planet
has been identified at high northern latitudes (Head
et al. 2011). Occupying around 6% of the total planet
surface, this region has been termed the northern
volcanic plains (NVP) (Fig. 3a).

Fig. 1. The principal components of the inner solar system include the four terrestrial planets, Mercury, Venus, Earth
and Mars, as well as Earth’s moon and the two moons of Mars. The main asteroid belt separates the inner and outer
portions of the solar system. On a yet smaller scale are objects that come close to Earth’s neighbourhood (on
astronomical scales) or cross Earth’s orbit; these are collectively termed Near Earth Objects (NEO). At time of writing,
there are 11 057 NEAs, of which 861 are larger than 1 km in diameter. (a) View of the inner solar system from above the
ecliptic plane. The yellow dots denote Near Earth Asteroids; white triangles denote Near Earth Comets (courtesy of
P. Chodas; 1 April 2014; NASA/JPL; http://neo.jpl.nasa.gov). (b) View of the inner solar system from the edge of the
ecliptic plane. The orange line represents Jupiter’s orbit (courtesy of P. Chodas; 1 April 2014; NASA/JPL; http://neo.
jpl.nasa.gov). (c) Enhanced colour mosaic of Mercury in orthographic projection centred at 08 (wide-angle camera of the
Mercury Dual Imaging System; NASA/John Hopkins University Applied Physics Laboratory/Carnegie Institution of
Washington). (d) Global view of Venus centred at 1808E (Magellan Synthetic Aperture Radar Mosaic; NASA/JPL).
(e) Nearside view of the Moon (Lunar Reconnaissance Orbiter wide-angle camera mosaic; NASA/GSFC/Arizona State
University). (f) Global view of Mars centred at 208N, 3008E (Viking Orbiter 1 mosaic; NASA/JPL/USGS).
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Fig. 2. All mapped tectonic structures on Mercury. Contractional (red lines: Byrne et al. 2014b) and extensional (blue lines: Byrne et al. 2013d ) are shown, as well as the
smooth plains units mapped by Denevi et al. (2013). Black squares represent the locations of pyroclastic deposits (Kerber et al. 2011a). Only impact basins .300 km in diameter
(dashed ellipses) are highlighted for clarity (Fassett et al. 2011). Topography is from the controlled Mercury Dual Imaging System (MDIS) wide-angle camera global base map
(2.7 km/px; Becker et al. 2012). The map is shown in a Robinson projection, centred at 08E.
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The NVP is not obviously related to one or more
large impact basins, although an origin due to
impact cannot be discounted (Byrne et al. 2013b).
Nevertheless, these plains, emplaced near the end
of the Late Heavy Bombardment (LHB) of the
inner solar system at around 3.7–3.8 Ga, were
likely to have formed in a single, voluminous event
associated with extensive partial melting of Mer-
cury’s mantle (Head et al. 2011). The NVP hosts
a variety of landforms characteristic of the planet’s
physical volcanological character in general. Num-
erous ‘ghost craters’, impact structures that predate
the emplacement of the plains and that are partially
to almost entirely filled with lava, are widespread
throughout the NVP. Features interpreted to be
lava flow fronts have also been identified through-
out the region, often as linear, lobate contacts that
embay older, more heavily textured terrain (Head
et al. 2011).

Valles. One of the most notable types of landform
spatially associated with the NVP is a set of five
broad channels (or ‘valles’) located to the SE of
the region. These channels, morphologically dis-
tinct from any other trough-like depression ident-
ified on Mercury, connect regions of smooth plains
through surrounding older terrain, and are typified
by steep, linear edges and smooth floors that fea-
ture rounded islands aligned with the long axes of
the channels (Byrne et al. 2013c). In one case, at the
end of Angkor Vallis, a group of such islands forms
a ‘splay’-like pattern as the channel opens into the
adjoining Kofi basin (Fig. 3b). Four of the valles are
orientated approximately radial to the 1640 km-
diameter Caloris basin, and may have originally
been impact-sculpted furrows carved by ballisti-
cally emplaced ejecta during the formation of that
basin (Byrne et al. 2013c). Some combination of
thermal and mechanical lava erosion, probably by
voluminous, high-temperature, low-viscosity flows,
then probably shaped the troughs to the forms the
channels have today (Byrne et al. 2013c; Hurwitz
et al. 2013b).

Taken together, these observations attest to
a predominance of flood-mode lava emplace-
ment for the majority of Mercury’s smooth plains
units. This inference is consistent with geochemical
data returned by MESSENGER’s X-ray spectro-
meter (XRS) instrument, which indicate that the
planet’s surface is relatively rich in Mg but poor
in Al, Ca and Fe, relative to terrestrial and lunar
basalts (Nittler et al. 2011). Mercury’s surface
therefore probably has a bulk composition interme-
diate between low-Fe basalt and high-Mg ultramafic
lithologies. Moreover, on-going XRS observations
suggest a compositional difference between the
NVP and the surrounding plains (Stockstill-Cahill
et al. 2012; Weider et al. 2012). The last widespread

volcanism on Mercury was therefore effusive, with
MESSENGER observations indicating that some
such activity, albeit highly spatially localized, may
have occurred as recently as around 1 Ga (Prockter
et al. 2010; Marchi et al. 2011).

Pyroclastic volcanism. Mercury is not without
explosive volcanism. Evidence for pyroclastic acti-
vity has been identified at numerous sites across the
planet, in the form of irregularly shaped depres-
sions without raised rims that are often located
atop low, broad rises. These features frequently
appear to be coalesced from smaller, overlapping
depressions and are typically encircled by haloes
of high-reflectance material with a steeper spectral
slope over visible to near-infrared wavelengths
(and so they appear redder) than most of Mercury’s
surface. These haloes have been interpreted as prox-
imal deposits of fine-grained pyroclastic material
(Head et al. 2009; Kerber et al. 2009, 2011a) (Figs
2 & 3c). The Caloris basin hosts a number of such
‘red’-haloed depressions, particularly along its
southern margin (Head et al. 2009). Some of these
depressions may, in fact, be long-lived loci of explo-
sive eruptive activity, whose locations have been
influenced by the underlying structural fabric of
the Caloris basin (Rothery et al. 2014).

It should be noted that irregular, coalesced
depressions occur across Mercury without red halos.
For example, numerous impact craters across the
planet host central ‘pits’ on their floors (and so are
termed pit-floor craters), which appear unrelated to
the impact process itself. Gillis-Davis et al. (2009)
investigated the morphology, structural associa-
tion, relative age and proximity to smooth plains
units of seven such pit craters, and concluded
that they formed through collapse into underlying
magma chambers. A similar mechanism has been
inferred for the origin of several non-impact crater-
hosted depressions within the broad channel net-
work proximal to the NVP (Byrne et al. 2013c).
Such pits therefore represent a third form of sur-
ficial igneous activity on Mercury, in addition to
pyroclastic and effusive eruptions (Gillis-Davis
et al. 2009).

Cratered plains. What of Mercury’s older terrain?
Trask & Guest (1975) classified Mercury’s non-
smooth plains surface portions as either ‘intercra-
ter plains’ or ‘heavily cratered terrain’. Intercrater
plains were interpreted to be the oldest surviving
surface unit, its emplacement even predating the
end of the LHB, whereas heavily cratered terrain
described large craters, basins and their deposits.
Despite the lack of primary volcanic landforms on
Mercury (e.g. large shield volcanoes), Strom et al.
(1975) considered their great volumes as evi-
dence that these plains were formed by volcanism.
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Indeed, there is a lower density of 100 km-diameter
craters on Mercury than on the Moon (Strom &
Neukum 1988; Fassett et al. 2011), and the oldest
surviving terrain on Mercury is no older than
4.1 Ga (Marchi et al. 2013). These findings rein-
force a geological history for the innermost planet
that features global resurfacing due to volcanism
before the end of the LHB. If so, then the majority
of Mercury’s surface – that portion consisting of
smooth plains, intercrater plains and heavily cra-
tered terrain – is dominantly volcanic.

A further observation is that the majority of
smooth plains deposits are collocated with impact
structures (Byrne et al. 2013b). This is best expres-
sed by the expansive interior Caloris smooth plains
deposits (Strom et al. 1975), and by smooth plains
within other large impact basins such as Rem-
brandt, Beethoven and Tolstoj (Fig. 2). Although
there is no consensus as to the existence of a causal
link between the impact process and volcanism
(Ivanov & Melosh 2003; Elkins-Tanton & Hager
2005), the impact process removes overburden,
introducing thermal energy to the lithosphere, and
resets pervasive regional- or global-scale stresses
(see the next section) (Byrne et al. 2013b). This
last point is particularly relevant to Mercury, since
the global contraction of the planet (see the next
section) will put the lithosphere into a pervasive
state of net compression, inhibiting voluminous
surface volcanism (e.g. Solomon 1977; Klimczak
2013). Whatever the mechanism responsible for
the generation of large volumes of partial melt that
then pools within impact structures – even if such
structures penetrate to existing magma chambers or
asthenospheric melts, or simply represent the short-
est path for ascending magma to reach the surface –
the presence of large craters and basins may have
played a key role in the last phase of extensive vol-
canic resurfacing on Mercury.

Tectonism

A key observation made of Mercury with Mari-
ner 10 data was the extent to which the planet’s
surface has been tectonized. Evidence for both
crustal shortening and lengthening was identified,

with the former process the overwhelmingly domi-
nant style of deformation (Strom et al. 1975).
Although Mariner 10 viewed less than half of
Mercury’s surface, the inference that such defor-
mation was global in nature was confirmed when
MESSENGER imaged the entire planet (Figs 1c &
2). To first order, crustal shortening has occurred
universally across all surface units of the inner-
most planet and is manifest as one of two primary
classes of structure (lobate scarp or wrinkle ridge)
(e.g. Strom et al. 1975; Watters et al. 2009), whereas
extension, in the form of graben, is restricted to vol-
canically flooded impact structures (e.g. Strom et al.
1975; Byrne et al. 2013d).

Lobate scarps. Lobate scarps are, in terms of over-
all length and accumulated relief, the larger of the
two principal expressions of crustal shortening on
Mercury. Like their counterparts on Mars and the
Moon (e.g. Mueller & Golombek 2004), they are
characterized by a steeply sloping scarp face and
a gently sloping back limb (Fig. 3d), and probably
represent a monocline or asymmetrical hanging-
wall anticline atop a blind or surface-breaking
thrust fault. Mercury’s lobate scarps range in length
from 9 to 900 km, and in places have accumulated
some 3 km of relief (Byrne et al. 2014b). Although
lobate scarps are superficially similar in morphol-
ogy to inferred lava flow fronts (Head et al. 2011),
their generally linear plan form, transection rela-
tionships with craters and surrounding terrain, and
their cross-cutting of craters with orthogonal hori-
zontal offsets support a tectonic origin for the over-
whelming majority of such scarps (e.g. Strom et al.
1975). A less commonly observed form of scarp,
termed a high-relief ridge, also occurs on Mercury
(Dzurisin 1978; Watters et al. 2009). High-relief
ridges are generally narrower than, but often transi-
tion into, lobate scarps, such that delineating these
ridges from other structures is difficult.

Wrinkle ridges. Wrinkle ridges, by comparison, are
substantially smaller landforms. Like on other ter-
restrial worlds, they are typically manifest on
Mercury as broad, low-relief arches with opposite-
facing leading edges, often superposed by a

Fig. 3. Examples of key volcanic and tectonic landforms on Mercury. (a) The northern volcanic plains (NVP) on
Mercury (outlined in white) occupy some 6% of the planet’s surface (Head et al. 2011). (b) Several valles occur
proximal to the NVP, shaped by high-temperature, low-viscosity lavas. Here, lava flowing through Angkor Vallis into
the Kofi basin has formed a ‘splay’-like pattern of erosional remnants (Byrne et al. 2013c). (c) An example of an
irregular depression, surrounded by a halo of high-albedo, fine-grained material interpreted as a pyroclastic vent (Kerber
et al. 2009). This example lies between the Rachmaninoff and Copland basins. (d) A prominent lobate scarp, Carnegie
Rupes, in Mercury’s northern hemisphere; contrast its size and morphology with that of the wrinkle ridge, situated in the
NVP, shown in (e). (f) Structural sketch of the tectonic structures within the Caloris basin (Byrne et al. 2013d). Ridges
and scarps are shown in black, whereas graben are shown in grey. Superposed craters and their ejecta deposits are also
shown. Azimuthal equidistant projections centred as follows: (a) 08N, 708E; (b) 578N, 124.28E; (c) 35.78N, 64.18E;
(d) 59.18N, 304.58E; (e) 61.48N, 49.98E; and (f) 308N, 1618E. Scale bar in (b)–(e) is 30 km.
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narrow ridge (Fig. 3e). Although the dimensions of
wrinkle ridges across the planet vary, they are usu-
ally tens to hundreds of metres in height and several
kilometres in length, and occur in long, subparallel
groups or in complex map patterns (Byrne et al.
2014b). Wrinkle ridges are likely to form due to
some combination of faulting and folding but the
orientations and depths of the causative faults, and
the contribution to ridge formation played by fold-
ing, remain open questions (e.g. Golombek et al.
1991; Plescia 1993; Zuber 1995; Schultz 2000).
Moreover, although wrinkle ridges appear to ac-
commodate small amounts of shortening relative
to lobate scarps (e.g. Plescia 1993) on all planets,
debate continues regarding their subsurface struc-
ture and whether their faults penetrate to tens of
kilometres (i.e. ‘thick-skinned deformation’: Zuber
1995; Golombek et al. 2001; Montési & Zuber
2003) or only the upper few kilometres of the litho-
sphere (i.e. ‘thin-skinned deformation’: Watters
1991; Mangold et al. 1998).

Graben. Where it has occurred, crustal lengthening
on Mercury has been accommodated by linear, topo-
graphical troughs that are interpreted as graben (i.e.
sets of antithetic normal faults) (e.g. Strom et al.
1975). Graben are typically 5–10 km long and up
to 1 km wide, although some examples are larger
(Klimczak et al. 2012; Watters et al. 2012). Some
graben appear isolated and show no evidence of
having interacted with other such structures, and
display a characteristic continuous deepening of
their floor towards the centre, whereas others are
segmented or linked (Klimczak et al. 2012). Most
graben show a generally constant displacement
along their lengths, implying that the development
of their component-normal faults was confined to
a mechanical layer of limited thickness (Klimczak
et al. 2012, 2013).

Distribution of tectonics. The tectonic deforma-
tion of Mercury is global but the distribution of
different classes of structure is far from uniform
(Fig. 2). In their global survey of contraction on
the innermost planet, Byrne et al. (2014b) charac-
terized shortening structures according to the pri-
mary terrain type in which they occur. Adopting
the nomenclature of Trask & Guest (1975), the sur-
face of Mercury can be described as consisting
of smooth plains and cratered plains (the latter
term incorporating both the intercrater plains and
heavily cratered terrain units described from images
returned by Mariner 10). Smooth plains structures
overwhelmingly consist of wrinkle ridges, and rep-
resent about two-thirds of the almost 6000 short-
ening structures mapped on the planet. Over 1500
ridges were identified in the NVP alone, with
the remainder situated within the circum-Caloris

plains or in smaller smooth plains deposits that
occur in more heavily cratered terrain. In contrast,
cratered plains structures are almost entirely lobate
scarps, and represent about one-third of all mapped
shortening structures.

In some cases, shortening structures demar-
cate volcanically filled or buried impact features.
For example, wrinkle ridges can delineate the rims
of buried craters (i.e. the Type-1 ‘ghost craters’
described by Klimczak et al. 2012), particularly in
the NVP, whereas lobate scarps situated within
impact basins can follow, and verge outwards in
the direction of, the basin perimeter (Byrne et al.
2014b). Moreover, approximately 100 lobate scarps
border areas of high-standing terrain on Mercury
and verge onto surrounding lows; these structures
have some of the greatest accumulated relief of
any tectonic landform on Mercury (Byrne et al.
2014b).

Earlier studies of Mercury’s tectonics sug-
gested that Mercury’s lithospheric fracture pattern
might contain evidence for ancient global stress
states resulting from, for example, tidal despinning
(Melosh & Dzurisin 1978; Melosh & McKinnon
1988). Byrne et al. (2014b) did not identify such
a globally coherent pattern but did note that in
places their structural survey was probably influ-
enced, in part, by lighting geometry (Mercury has a
remarkably low obliquity of c. 2 arcmin). Even so,
in places there are systematic patterns of regional-
scale deformation, where ridges and scarps form
laterally contiguous, narrow bands of substantial
length. These narrow zones of concentrated crustal
shortening are Mercury’s equivalent to the fold-
and-thrust belts of Earth (Byrne et al. 2014b).

Planetary radius change. The widespread distri-
bution of lobate scarps on Mercury implies that
their formation is linked to a process that is global
in scale. Thermal models for the innermost planet
require a substantial contraction in response to sec-
ular cooling of the planet’s interior (e.g. Solomon
1977; Schubert et al. 1988). It is this contraction,
and the resultant horizontal compression of the
planet’s lithosphere, that probably formed the lobate
scarp population observed today. Importantly, the
morphology of lobate scarps can be used to esti-
mate their contribution to planetary radius change
(a direct measure of planetary contraction), wherein
their relief is related to their horizontal component
of shortening using an assumed fault dip.

There has been a long-standing disagreement
between estimates of radius change made from
photogeological studies of Mercury’s brittle struc-
tures (e.g. Strom et al. 1975; Watters et al. 1998,
2009; Di Achille et al. 2012) and those predicted
by thermal evolution models (e.g. Solomon 1977;
Dombard & Hauck 2008), with those from the first
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approach typically about 1–3 km but those from
modelling of the order of 5–10 km. The availability
of global imaging and topographical data for
Mercury from the MESSENGER mission, how-
ever, has enabled this issue to be resolved: Byrne
et al. (2014b) have shown that the portion of radius
change accommodated by tectonic structures is at
least 5–7 km, bringing into accord photogeologi-
cal observations and thermal history models. This
finding is of importance to on-going studies of Mer-
cury’s bulk silicate abundances of heat-producing
elements, mantle convection, and the cooling and
present-day structure of the planet’s large metallic
core.

The provenance of Mercury’s wrinkle ridges is
not as obviously linked to global contraction as
are its lobate scarps. Because they are generally
associated with volcanic units within impact struc-
tures, subsidence of volcanic infill may play a domi-
nant role in their formation (e.g. Watters et al. 2009;
Byrne et al. 2013d ), as has been suggested for
wrinkle ridges within volcanic units on the Moon
(e.g. Melosh 1978) and on Mars (e.g. Zuber &
Mouginis-Mark 1992). However, given their small
size relative to lobate scarps, removing the con-
tribution of wrinkle ridges to Mercury’s global con-
traction results in a change in radius only around
10% lower than that calculated for all structures.

Tectonics within impact structures. Whereas the
widespread smooth and cratered plains structures
attest to global crustal shortening, extension on
Mercury is almost exclusive to volcanically in-filled
craters and basins (Murchie et al. 2008; Watters
et al. 2009; Byrne et al. 2013d). However, the com-
plexity of extensional deformation varies consider-
ably, and increases within progressively larger
impact structures. For example, many ghost craters
on Mercury, tens of kilometres across, contain sets
of graben in their interior that have no preferred
orientation and so form polygonal block patterns;
these ghost craters may also feature graben super-
posed on (and following the strike of) the wrinkle
ridges that outline the ghost crater rim (Klimczak
et al. 2012). Several medium-sized basins on the
planet also feature interior graben that show no
preferred orientations, such as the 230 km-diameter
Mozart basin, although some graben in this basin
appear concentric to its perimeter (Blair et al. 2013).
Yet, with an increase in basin diameter, the pattern
of interior extension becomes even more com-
plex: the 750 km-diameter Rembrandt basin fea-
tures collocated basin-radial graben and wrinkle
ridges, which are bound to the north by circumferen-
tial graben (and ridges) (Byrne et al. 2013d).

However, the greatest structural complexity of
all occurs within the Caloris basin, where a promi-
nent set of radial graben (termed Pantheon Fossae)

dominates the basin interior, is superposed by basin-
circumferential ridges and is bound by a near-
complete annulus of circumferential graben located
at about half a basin radius from the centre of
Caloris (Byrne et al. 2013d). Beyond this annulus,
graben once more lack a preferred orientation, and,
forming a polygonal map pattern, steadily decrease
in width, depth and length towards the basin rim
(Fig. 3f).

Finite-element models show that the thermal
contraction of thick, rapidly emplaced lava flows
produces quasi-isotropic horizontal stresses that
promote the formation of graben with mixed orien-
tations, such as those observed within ghost cra-
ters and medium-sized basins on Mercury (Freed
et al. 2012; Blair et al. 2013). This process may
also account for the mixed orientations of gra-
ben within Caloris. Moreover, such models also
show that graben can nucleate atop ghost-crater-
delineating wrinkle ridges (Freed et al. 2012) and
over buried basin rings (Blair et al. 2013), which
may account for the circumferential graben within
Caloris. As yet, however, there is no consensus for
the origin of the remarkable Pantheon Fossae
(Klimczak et al. 2013), although previous studies
suggested that they may have formed due to dyke
propagation (Head et al. 2008) or to flexural uplift
of the basin centre, in response either to the volcanic
emplacement of the circum-Caloris smooth plains
(Freed et al. 2009) or to the inward flow of the
lower crust (Watters et al. 2005).

Venus

The major findings on Venus’ composition, volca-
nic forms and tectonic structures have been obtained
mainly by analysing data from the late 1970s and
1980s, together with Magellan radar images (Figs
1d & 4). Nevertheless, Venus has always been of
particular interest due to its Earth-like size, mass
and internal structure, despite great differences
between the physiography of the two planets. The
main reason for this discrepancy is probably the
apparent lack of plate tectonics on Venus, which is
interpreted to be due to the planet’s water-depleted
bulk composition. For that reason, the following
subsection starts by addressing Venus’ general geo-
dynamics, which serve as a basis from which to
cover specific aspects of its tectonic and volcanic
character.

Tectonics

Venus as a one-plate planet. Water, and its capac-
ity to weaken rock, is essential in governing
lithospheric rheology on Earth. Together with temp-
erature, water is the major actor responsible for
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defining the thickness and strength of the elas-
tic lithosphere, its decoupling from the deeper
asthenosphere and, hence, plate tectonic onset and
development. The absence of water on Venus’ sur-
face due to the high surface temperatures (460 8C
on average: e.g. Lewis 2004), coupled with the
dehydrated character of its interior as a result of
extensive volcanic degassing (Kaula 1990; Grin-
spoon 1993; Smrekar & Sotin 2012), precludes plate
tectonics on the planet (e.g. Smrekar et al. 2007;
McGill et al. 2010).

The lack of Venusian plate tectonics is also
implied by the global dominance of a basaltic com-
position of the crust, with limited possible excep-
tions on the highlands (Terrae) (Surkov 1983;
Hashimoto et al. 2008; Helbert et al. 2008). A
dehydrated, stiff diabasic crust prevents the onset
of lithospheric break-up and ensuing subduction;
moreover, dry systems possess a highly viscous
and water-depleted mantle, which precludes any
asthenosphere–lithosphere decoupling (Kohlstedt
& Mackwell 2010; Huang et al. 2013), a process
that modulates relative plate motions on Earth
(e.g. McKenzie 1967; Isacks et al. 1968; Morgan
1968; Ranalli 1995, 1997; Gung et al. 2003; Scop-
pola et al. 2006; Anderson 2007; Doglioni et al.
2007, 2014; Fischer et al. 2010). The main conse-
quence of a globally continuous lithosphere are
a conductive stagnant lid on top of a convective
and viscous deep mantle (Moresi & Solomatov
1998; Reese et al. 1999; Solomatov & Moresi 2000;
O’Rourke & Korenaga 2012; Smrekar & Sotin
2012), and planetary tectonics that directly reflect
underlying mantle processes (e.g. Smrekar & Phil-
lips 1991; Herrick & Phillips 1992; Bindschadler
et al. 1992; Kohlstedt & Mackwell 2010; Huang
et al. 2013).

On Venus then, planetary cooling is achieved
through both conduction across a stagnant lid and
advection by mantle plumes, whose surface expres-
sions are well represented by a great variety of vol-
canic forms (e.g. volcanic rises, coranae and shield
volcanoes) (Solomon & Head 1982; Morgan &
Phillips 1983; Smrekar & Parmentier 1996; Schu-
bert et al. 1997; Hansen & Olive 2010). Compared
with plate tectonics, however, near-surface conduc-
tion and deep advection are regarded as less efficient
than mantle convection in cooling a terrestrial
planet whose mass and heat production is thought
to be more or less equal to that of Earth. The
result, therefore, is the heating up of the mantle,
with a consequent increase in mantle dynamics
and volcanism that may ultimately lead to periodical
global resurfacing and overturn (e.g. Parmentier &
Hess 1992; Turcotte 1993; Nimmo & McKenzie
1998; Reese et al. 1999; Turcotte et al. 1999), as
suggested by the low-density and nearly uniform
distribution of craters on the surface of Venus.

These craters give an average age of between 500
and 800 Ma for almost the entire surface of Venus
(Schaber et al. 1992; Strom et al. 1994; McKinnon
et al. 1997; Campbell 1999), far younger than the
scarred surfaces of Mercury or the Moon.

The topography of Venus is one of the princi-
pal pieces of evidence for the absence of modern
plate tectonics on that planet. Unlike Earth, which
is characterized by the classic ocean–continent
bimodal hypsometry, Venus shows a unimodal hyp-
sometric function, with over 80% of the surface
covered by plains (Planitiae) and only 8% of the
surface at elevations greater than 2 km above the
datum. These uplands are in turn subdivided into
Terrae and Regiones, with Regiones having more
moderate relief than the Terrae (Fig. 4) (Banerdt
et al. 1997; Tanaka et al. 1997).

Also, unlike Earth, the strong correlation
between free-air gravity and topography, and the
high gravity anomaly/relief ratios of some posi-
tive topographical features, indicate that topogra-
phical variations on Venus are deeply compensated
through upwelling and downwelling processes
within the mantle (e.g. Smrekar & Phillips 1991;
Solomon 1993; McGill et al. 2010). This implies
the absence of an Earth-like asthenosphere–litho-
sphere decoupling, as predicted for a dehydrated
planetary lithosphere, and points to a direct correla-
tion between crustal deformation and the upwelling–
downwelling convective motions of the mantle (e.g.
Kiefer & Hager 1991; Smrekar & Phillips 1991;
Solomon 1993). Hence, dome-shaped Regiones (i.e.
elevated expanses) associated with broad free-air
gravity anomalies (e.g. Beta, Atla and Eislta Regi-
ones), together with great compensation depths,
have been interpreted as volcanic rises directly
related to underlying mantle plumes. Moreover,
the enigmatic Artemis, a feature 2400 km in diam-
eter, may be the largest mantle-plume-derived land-
form in the solar system (Hansen & Olive 2010).
Therefore, Venus is thought to be essentially domi-
nated by vertical tectonism (e.g. Phillips & Malin
1983; Campbell et al. 1984; Kiefer & Hager 1991;
Senske et al. 1992; Smrekar 1994; Solomon 1993;
Smrekar & Parmentier 1996; Smrekar et al. 1997).

On the other hand, some extensive and highly
deformed highlands on Venus, termed crustal pla-
teaux (e.g. Ishtar and Aphrodite Terrae and Alpha,
Ovda, Thetis, Phoebe and Tellus Regiones), are
associated with low gravity anomalies and a low
gravity/topography ratio, which are indicative of
a shallow depth of compensation and a thick-
ened, low-density crust (Bindschadler et al. 1992;
Smrekar & Phillips 1991; Kucinskas et al. 1996;
Simons et al. 1997). The two main hypotheses pro-
posed to explain such peculiar geophysical sig-
natures invoke either downwelling or upwelling
mantle flows. According to the downwelling model,
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Fig. 4. Simplified geological map of Venus, modified after Ivanov & Head (2011). From that original source, the following units were merged to represent: (1) tectonized
terrains – units t (tessera, Fortuna Formation), pdl (densely lineated plains, Atropos Formation), pr (ridged plains, Lavinia Formation), mb (mountain belts, Akna Formation) and gb
(groove belts, Agrona Formation); (2) global volcanic terrains – units psh (shield plains, Accruva Formation), rp1 (regional plains 1, Rusalka Formation) and rp2 (regional plains
2, Ituana Formation); (3) rifting-related terrains – units pl (lobate plains, Bell Formation), ps (smooth plains, Gunda Formation) and sc (shield clusters, Boala Formation); and
(4) tectonic components related to (3) – units rz (rift zones, Devana Formation) and ac (Artemis Canyon materials). Impact craters and crater outflows are shown as units c and cf,
respectively. Individual tectonic structures are omitted for clarity. Black dots represent the locations of volcanic edifices (Head et al. 1992). Grey areas correspond to the radar-based
hillshade (i.e. no mapping data available). The geological map is superimposed on a Magellan Global Topography Data Record shaded relief map (4.6 km/px) shown here in a
Robinson projection, centred at 08E.
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crustal thickening and plateau formation is achieved
through accretion of a thin primordial lithosphere
by downwelling of a cold mantle diapir (Bind-
schadler & Parmentier 1990; Bindschadler & Head
1991; Bindschadler et al. 1992; Gilmore & Head
2000; Marinangeli & Gilmore 2000). In contrast,
upwelling may accomplish crustal thickening and
plateau formation through magmatic underplating
above a laterally spreading hot plume (Grimm &
Phillips 1991; Phillips et al. 1991; Hansen & Willis
1998; Phillips & Hansen 1998; Ghent & Hansen
1999). The latter hypothesis is consistent with the
evidence of low-density felsic rocks within crustal
plateaux (Basilevsky et al. 1986, 2012; Nikolaeva
et al. 1992; Jull & Arkani-Hamed 1995; Arkani-
Hamed 1996; Hashimoto et al. 2008; Helbert
et al. 2008; Mueller et al. 2008; Harris & Bédard
2014a), which could have been generated by high-
temperature plumes in an earlier, wetter environ-
ment on Venus (McGill et al. 2010; Shellnutt 2013).
Upwelling in response to bouyant melt formed
by the impact of large bolides (c. 20–30 km in dia-
meter) may have contributed to the formation of
crustal plateaux and tesserated terrain (Hansen
2006).

However, the upwelling model cannot explain
the widespread contractional tectonics observed at
some plateau margins nor the complex compres-
sional–extensional deformation recorded on crustal
plateaux within so-called tesserae terrains (Ivanov
& Head 1996; Gilmore et al. 1998; Romeo et al.
2005; Hansen & López 2010). On the other hand,
the downwelling hypothesis fails to explain the
flat-topped topography of plateaux, and, further, it
requires an excessive amount of time for crustal
thickening (Lenardic et al. 1995; Kidder & Phillips
1996). Interestingly, a recent model suggests that
crustal plateaux (and tesserae terrains across
Venus’ surface) might represent buoyant continental
crust remnants that were spared from catastrophic
overturns due to their inherent buoyancy, and that
thereafter were involved in cycles of compressional
and extensional tectonism as a function of the evol-
ving continental crust/lithosphere mantle thickness
ratio (Romeo & Turcotte 2008). This last model is
not strictly an alternative to the upwelling hypoth-
esis as it still allows that the continental crust on
Venus could have originated, and then be devel-
oped, through felsic magma production atop hot
mantle plumes.

Rift systems and extensional deformation. Despite
the absence of plate tectonics on Venus, the planet
still hosts Earth-like rift systems called chasmata
that extend for several thousand kilometres across
its surface (e.g. Devana, Ganis, Daiana/Dali, Hec-
ate and Parga Chasmata) (Fig. 4). These structures
have been interpreted as linear zones of mantle

upwelling and lithospheric extension, in several
cases punctuated by single plumes or plume clusters
manifest as volcanic rises, shield volcanoes, coronae
and radiating graben–fissure systems (e.g. Schaber
1982; Head & Crumpler 1987; Hansen & Phillips
1993; Baer et al. 1994; Hamilton & Stofan 1996;
Aittola & Kostama 2000; Magee & Head 2001;
Stofan et al. 2001; Krassilnikov & Head 2003;
Harris & Bédard 2014a). On the basis of structural
observations and gravitational data, further major
extensional rifts have been proposed to follow
plains’ depressions that were later covered by volca-
nic materials (Sullivan & Head 1984; Harris &
Bédard 2014b).

Extensional deformation is widespread on plani-
tiae, and commonly manifest as graben that appear
generally associated with plume diapirism and
volcanic centres (McGill et al. 2010). Graben that
form polygonal patterns are also present on Venus,
with that pattern being attributed variously to
cooling–heating cycles induced by subsurface
dynamics (Johnson & Sandwell 1992) or to cli-
mate changes (Anderson & Smrekar 1999; Smrekar
et al. 2002).

Mountain belts. The large number of Venusian
rift systems, and their corresponding lithospheric
extension, is not compensated by a comparable
cumulative length of compressive mountain belts
(montes). Mountains are, instead, limited to crustal
plateau boundaries, such as the Montes encircling
Laksumi Planum at Isthar Terra (Danu, Akna, Freya
and Maxwell Montes: Fig. 5a). This has been taken
as further evidence for the lack of plate tectonics
on Venus, where contractional deformation is
widely distributed throughout the entire lithosphere
rather than at discrete sites (Solomon et al. 1992;
Solomon 1993). Indeed, folds and faults are partic-
ularly pervasive in the tesserated terrains, which
are expressions of multiple deformations on high-
relief crustal plateaux and crustal remnants within
plains (Bindschadler & Head 1991; Hansen & Willis
1996; Hansen et al. 1999, 2000; Romeo & Turcotte
2008). Folds and faults are also common in the pla-
nitiae, either concentrated in narrow contractional
ridge belts or in widely distributed wrinkle ridges
(Tanaka et al. 1997; McGill et al. 2010).

Contractional deformation. The ridge belts are up
to 20 km wide and several hundreds to thousands
of kilometres long (Ivanov & Head 2001; Rosen-
berg & McGill 2001). As for terrestrial fold-
and-thrust systems, these Venusian features are
also thought to have formed due to long-lived tec-
tonic stress fields. The most widely distributed
contractional landforms are wrinkle ridges (e.g.
Tanaka et al. 1997; Ivanov & Head 2008). The ori-
gin of these structures has been variously ascribed
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to gravitational spreading on shallow slopes (McGill
1993), rock thermal expansion induced by a hotter
atmosphere than at present after global resurfacing
(Solomon et al. 1991) or regional tectonics con-
trolled by a stress state centred on the planetary
geoid, with compression at the geoid’s low-standing
regions and extension at the geoid’s high-standing
regions, respectively (Sandwell et al. 1997; Bilotti
& Suppe 1999).

Strike-slip tectonics. On a planet dominated by
vertical tectonism and characterized by widely dis-
tributed deformations, there is no space for strike-
slip shear belts that have traditionally been highly
underconsidered on Venus (e.g. Solomon 1993;
McGill et al. 2010) despite the apparently straight-
forward evidence collected so far (Raitala 1994;
Brown & Grimm 1995; Ansan et al. 1996; Koenig
& Aydin 1998; Tuckwell & Ghail 2003; Kumar
2005; Romeo et al. 2005; Chetty et al. 2010;
Fernàndez et al. 2010; Harris & Bédard 2014a, b).
For example, Brown & Grimm (1995) highlighted
en echelon fractures and folds along and within
Artemis Chasma. Koenig & Aydin (1998) and
Fernàndez et al. (2010) showed horse-tail termin-
ations, en echelon folds, contractional bends and
strike-slip offsets in Lavinia Planitia. Finally,
Romeo et al. (2005) and Chetty et al. (2010) ident-
ified conjugate shear zones in Ovda Regio asso-
ciated with tear-folds and imbricate duplexes.
Continental drift may account for the substantial
horizontal tectonism required by prominent strike-
slip belts (Harris & Bédard 2014b).

Volcanism

On a geodynamically active planet that lacks
modern-day plate tectonics, upwelling plumes and
their related surface expressions are its dominant
volcanic traits. The volcanic landforms on Venus
largely depend on the dimensions of the blooming
head of such mantle plumes, which are mostly
responsible for the development of volcanic rises
ranging from 1400 to 2500 km in diameter and up
to 2.5 km in elevation (e.g. Beta, Atla, Bell; Eistla,
Luafey, Imdr, Themis and Dione Regiones). The
enigmatic coronae, also attributed to volcanism,
display variable diameters (with 250 km being the
average). Other types of volcanic landform include
shield volcanoes, which normally range between
100 and 600 km in diameter (and which rarely
exceed 700 km in breadth: see Stofan et al. 1995;
Glaze et al. 2002; Crumpler & Aubele 2000; Ivanov
& Head 2013 for size distributions). These land-
forms are typically accompanied by smaller volca-
nic features (,100 km in diameter), such as small
and intermediate volcanoes known as tholi and
steep-sided domes (‘pancakes’: Fig. 5f).

Volcanic rises. Volcanic rises, corresponding to
Venus’ regions, have been classified either as
volcano-dominated, coronae-dominated or rift-
dominated (Stofan et al. 1997). Whereas in the first
case volcanic rises are representative of major
plume sites along rift zones, in the latter two cases
the plume heads could have been broken up into a
swarm of smaller upwelling diapirs (although not
necessarily simultaneously) (Stofan et al. 1995).
Smrekar & Stofan (1999) noted that the volcanic
construction typical of volcano-dominated rises
requires large volumes of pressure-release melting
due to vigorous hot plumes generated at the core–
mantle boundary, whereas corona-dominated rises
are more likely to be associated with smaller
plumes from shallower depths.

Coronae, novae and arachnoids. Coronae (Fig. 5d
& e) are annular forms dominated by either posi-
tive or negative topography, and which are encircled
by concentric systems of fractures and ridges (Type
1 coronae) or by a rim alone (Type 2) (Basilevsky
et al. 1986; Head et al. 1992; Squyres et al. 1992;
Stofan et al. 1992, 2001). Coronae are often associ-
ated with radiating, graben–fissure systems (Fig.
5d) that converge towards the coronas’ rims and
that in some cases reach their centres (with such
structures being termed novae) (Barsukov et al.
1986; Crumpler & Aubele 2000; Aittola & Kostama
2000, 2002; Krassilnikov & Head 2003; Basilev-
sky et al. 2009; Studd et al. 2011). Indeed, radiat-
ing graben–fissure systems can also be associated
with large volcanoes (e.g. Keddie & Head 1994;
Galgana et al. 2013) or can occur individually, fol-
lowing rift zones (Grosfils & Head 1994; Aittola
& Kostama 2000). The structures within radiat-
ing graben–fissure systems can extend for up to
2000 km. In places, they may become subparallel
to each other, or they may form systems perpen-
dicularly orientated to the prevailing maximum
regional horizontal stress (Grosfils & Head 1994).
Based on their appearance and lateral extent, radiat-
ing graben–fissure systems have been compared
with giant radiating dyke swarms on Earth, such
as the Proterozoic Mackenzie and Matachewan
swarms in Canada, the Tertiary Sky Isle swarm in
Scotland, and the Mesozoic central Atlantic recon-
structed swarm (Ernst et al. 1995). The Venusian
systems also resemble radiating extensional systems
on Mars (Ernst et al. 2001; Wilson & Head 2002).

Arachnoids are characterized by ridges that
converge towards annular depressions (Aittola &
Kostama 2000; Crumpler & Aubele 2000; Frankel
2005). These landforms have often been consid-
ered as a subtype of coronae (Head et al. 1992;
Price & Suppe 1995; Hamilton & Stofan 1996).
Indeed, coronae, radiating graben–fissure systems
(novae) and arachnoids may represent different
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evolutionary stages of mantle plume upwellings
(Hamilton & Stofan 1996). Under such a scenario,
corona evolution begins with lithospheric up-
doming and radial fracturing due to mantle plume
(or diapir) impingement, followed by the gravita-
tional collapse of the central dome due to radial
spreading and thinning of the plume (Squyres et al.
1992; Stofan et al. 1991, 1992; Hamilton & Stofan
1996). Recent finite-element modelling indicates
that radial fractures form during early mantle dia-
pir impingement, with an outward propagation of
dykes occurring at a later stage due to loading-
induced downward lithospheric flexure (Galgana
et al. 2013). Together with novae, then, coronae with
a topographically positive central dome and radial
fracture system may represent the first stage of
mantle plume upwelling, and coronae with a cen-
tral annular depression might be typical of the
final stage (Stofan et al. 1992; DeLaughter & Jurdy
1999). In another analysis, however, Gerya (2014)
proposed a variation of this general process. Gerya
suggested a scenario in which novae and coronae
structures are not directly related to astenospheric
plume impingement but, instead, are the result of
magma-assisted convection of a weak ductile crust,
induced by decompressional melting of hot rising
mantle plumes. Under this scenario, novae represent
the initial stage of this convection, with coronae cor-
responding to the intermediate and final stages.

Whether arachnoid structures are a somewhat
intermediate phase between novae and coronae
(Hamilton & Stofan 1996) is still the subject of
debate, however, given the different geological con-
texts in which arachnoids have been documented.
In particular, these structures are largely located
in volcanic plains, and are rarely situated along the
equatorial deformation zones where most novae
and corona are situated (Aittola & Kostama 2000).

Volcanic products. The primary volcanic prod-
ucts on Venus are extensive tholeitic–alkali basalt

plains that cover about 70% of the planet. These
plains differ in terms of the styles of deformation
to which they have been subjected or their connec-
tion with small shield volcanoes (ridged, lineated,
regional plains, lobate and shield plains) (e.g.
Ivanov & Head 2011).

Typical volcanic landforms include lava flow
fields, lava channels and steep-sided domes (Crum-
pler & Aubele 2000; Stofan et al. 2000; Magee &
Head 2001). Lava flow fields are composed of
very long (up to 1000 km) digitated flows, both with
radar bright (interpreted to be aa-type lavas) or dark
(pahoehoe-type lavas) surfaces, which erupted from
shield volcanoes and fissures (including those of
coronae). Their substantial lengths are attributed
to endogenous spreading processes, such as infla-
tion and lava tubes, which should be facilitated by
an efficient cooling of the flow surface (due to
convective processes within the dense atmosphere,
whose pressure is c. 9.2 MPa), aided by a low
cooling rate of the lava flow’s inner core (due to
the high surface temperature environment of c.
7008K) (Grosfils et al. 1999; Crumpler & Aubele
2000).

Remarkably long individual lava channels, of
typical lengths of between 100 and 1000 km in
general but in some cases extending to more than
5000 km, are explained by invoking very low-
viscosity fluxes such as these expected for exotic
lava types such as komatites, carbonatites and sul-
phur flows (Kargel et al. 1994; Baker et al. 1997;
Williams-Jones et al. 1998; Komatsu et al. 2001;
Lang & Hansen 2006).

There is evidence for highly viscous lavas on
Venus, too. Such evidence includes steep-sided
domes, which are circular, positive-relief landforms
with diameters ranging between 20 and 100 km
(e.g. Pavri et al. 1992), and flows with pronounced
margins. The higher lava viscosities implied by
these features could be due to a high silica content
(i.e. evolved magmas), high crystal content or high

Fig. 5. Examples of volcanic and tectonic features on Venus. (a) Fold-and-thrust belt sequence of Akna Montes; note
the presence of intra-mountain basins (image centre: 698N, 3188E; Magellan full resolution radar mosaic archive
MGN-RDRS FMAP: FL69n318). (b) Complex deformation in Sudice Tessera; at the lower right are the regional plains
of Aino Planitia (378S, 1138E; MGN-RDRS FMAP: FR37s113). (c) Tectonized ridge belt east of Aino Planitia (458S,
116.58E; MGN-RDRS FMAP: FR45s117). (d) Structural relations between Tituba corona (T), centred at 42.58N,
214.58E (termed Type 1, after Stofan et al. 2001) and the corona at 40.48N, 212.48E (Type 2, after Stofan et al. 2001).
Note the concentric and radial features related to both the coronae and the small volcanic edifices at the NW margin of
Tituba corona (white arrows). The radial fissures and graben between the coronae become parallel at a certain distance
from the coronae centres, and are common to both the two main volcanic landforms (MGN-RDRS FMAP: Fl39n211,
FL39n213, FL39n215, FL41n211, FL41n213, FL41n215, FL43n211, FL43n213, FL43n215). (e) Becuma radiating
graben system (nova) (B) (34.138N, 21.98E), Dzudzdi corona (D) (358N, 20.78E) and the Aegina Farrum steep-sided
dome (A) (35.548N, 21.18E) in the eastern Sedna Planitia. Note that Aegina Farrum is transected by a 220 km-long
extensional fault. (MGN-RDRS FMAP: Fl35n021, FL35n023, FL33n021, FL33n023). (f) Steep-sided dome at 2.88S,
150.98E, to the west of Sella Corona (not shown) and its related graben system (lower right corner) (MGN-RDRS
FMAP: FL03s151). The scale bar in all images is 20 km, except in (d) where it is 50 km. All images are shown with
simple cylindrical projections, except (a), which has a stereographic projection.
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vesicularity (Head et al. 1992; Pavri et al. 1992). It
has been proposed that the considerable atmospheric
pressure on Venus’ surface prevents the formation
of eruptive plumes due to explosive magmatic frag-
mentation and, instead, is conducive to outpour-
ings of frothy lava domes.

It is widely accepted that the planet’s high
atmospheric pressure would strongly inhibit gas
exsolution in magmas and, hence, would inhibit or
preclude entirely explosive eruptions (e.g. Head &
Wilson 1986). However, geomorphological evi-
dence exists for an extensive pyroclastic flow
deposit near Diana Chasma, which, if found to be
a common form of volcanic deposit on Venus,
would have implications for the mantle volatile
content and the volcanic origin of atmospheric
SO2 on the planet (Ghail & Wilson 2013).

Global volcanic resurfacing. Global resurfacing
models of Venus (e.g. Parmentier & Hess 1992;
Turcotte 1993; Nimmo & McKenzie 1998; Reese
et al. 1999) call for volcanic and tectonic events
that are globally correlated throughout the planet’s
geological record. Indeed, according to several
studies (e.g. Basilevsky & Head 1995, 1998, 2000;
Basilevsky et al. 1997; Ivanov & Head 2011), all
of the physiographical units recognized on the
Venusian surface are expressions of a common
sequence of events across the globe. The geological
map of Ivanov & Head (2011) is currently the most
complete and updated synthesis of this view, where
each morphological unit is regarded as a strati-
graphic unit of global significance and, when syn-
thesized as such, describes a coherent Venusian
geological history.

Under this scheme, all deformed terrains
(tessera, densely lineated plains, ridged plains,
mountain belts and groove belts) should belong to
the earliest phase of tectonism, which was followed
by extensive volcanic effusion manifest as regional
and shield plains, and which was followed in turn by
more spatially concentrated, long-lived rift volcan-
ism, represented by morphological units such as
lobate plains, smooth plains and shield clusters.
The first phase of volcanism probably began with
the construction of shield plains associated with
small shield structures and steep-sided domes, the
likely expression of shallow crustal melting. This
form of volcanism was followed by the effusion and
emplacement of huge volumes of lava, essentially
mantle-derived, pressure-release melts as attested
to by regional plains and extended lava channels.
This second volcanic phase, well represented by
lobate plains, is supposed to be dominated by volu-
minous volcanic effusions punctuated by long tem-
poral gaps (Ivanov & Head 2013).

Guest & Stofan (1999) defined as a ‘directional
model’ the view of a globally correlated geological

history, which contrasts with a ‘non-directional
model’ in which the recognition of similar
sequences of events in different regions of Venus
does not imply their coeval occurrence. In favour
of the first model are the globally distributed
regional plains that were utilized as the main strati-
graphic reference for the entire Venusian time
system by Ivanov & Head (2011). These authors
argued that the global presence of these plains
supports the general ‘directionality’ of Venus’ geo-
logical history but some authors have highlighted
several exceptions to this hypothesized commonal-
ity in the geological record across the entire sur-
face (Guest & Stofan 1999; Rosenberg & McGill
2001; McGill 2004; McGill et al. 2010). Of note,
and supported by observations of where in terres-
trial geology equivalent morphologies and geneses
do not necessarily mean a coeval origin, McGill
et al. (2010) proposed an intermediate view within
which a general ‘directional’ framework predom-
inated but in which tectonic and volcanic events
might still have developed at different times and
in diverse locations.

Nevertheless, the resurfacing of Venus continues
to be viewed within the narrative of either ‘cata-
strophic’ (e.g. Schaber et al. 1992) or ‘equilibrium’
(e.g. Phillips et al. 1992) scenarios, both of which
must satisfy the near-random spatial distribution of
fewer than 1000 impact craters across the planet
and the lack of many obviously modified such
craters. Although catastrophic models more readily
satisfy these constraints, recent work has also shown
that equilibrium models, within a select parame-
ter space, also meet these requirements (Bjonnes
et al. 2012). Moreover, numerous further constraints
introduced by careful geological mapping ques-
tion the underlying assumptions of the catastrophic
scenarios. It may be that a protracted period of
resurfacing set against the backdrop of a globally
thin lithosphere (e.g. the ‘SPITTER’ hypothesis:
Hansen & Young 2007) accounts more fully for
these observational constraints. This viewpoint is
bolstered by recent mapping and modelling, which
indicates that Venus’ tesserae terrain probably pre-
dates extensive resurfacing of the planet (Romeo
& Turcotte 2008; Hansen & López 2010).

The Moon

The Moon is a key planetary body with which to
study diverse volcanic activity, as it has produced
a variety of volcanic landforms over an extended
period of time (Figs 6 & 7). As the Moon is lack-
ing plate tectonics, an atmosphere, water and life,
it allows us to study volcanic processes in an unobs-
cured form (e.g. Hiesinger & Head 2006; Jaumann
et al. 2012; Hiesinger & Jaumann 2014). Analyses
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Fig. 6. The distribution of maria, volcanic edifices, sinuous rilles and selected tectonic structures on the Moon. The lunar maria are highlighted in red. Impact basins larger
than 300 km in diameter are shown as dashed black ellipses (Kaddish et al. 2011). The locations of floor-fractured craters (yellow dots) are taken from Jozwiak et al. (2012).
Identified pyroclastic deposits (black squares: Gaddis et al. 1998) and sinuous rilles (green lines: Gustafson et al. 2012; Hurwitz et al. 2012, 2013a) are shown. The approximate
locations of the broad shield volcanoes identified by Spudis et al. (2013) are highlighted as white ellipses with bold white letters representing: A, Aristarchus; C, Cauchy; G, Gardner;
H, Hortensius; K, Kepler; M, Marius; P–H, Prinz–Harbinger; and R, Rümker. The locations of the 118 domes and cones identified on the Moon are shown as green triangles (data
from http://digilander.libero.it/glrgroup/consolidatedlunardomecatalogue.htm). Maria labels are abbreviated as follows: Au, Australe; Co, Cognitum; Cr, Crisium; Fe,
Fecundidatis; Fr, Frigoris; Ho, Humorum; Hu, Humboldtianum; Ig, Ingenii; Im, Imbrium; In, Insularum; Ma, Marginis; Mo, Moscoviense; Ne, Nectaris; Nu, Nubium; Or, Orientale;
Se, Serenitatis; Sm, Smythii; Tr, Tranquillitatis; Va, Vaporum. The background image is a Lunar Orbiter Laser Altimeter (LOLA)-based shaded-relief map (0.23 km/px) with a
Robinson projection, centred at 08E.
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of lunar samples, coupled with remote-sensing
investigations, have yielded detailed information
on many aspects of lunar volcanism (i.e. extrusion)
and, to a lesser amount, on lunar plutonism (i.e.
intrusion). From those studies, it became apparent
that magmatism has been a major crust-building
and resurfacing process throughout the Moon’s geo-
logical history (e.g. Lucey et al. 2006; Shearer et al.
2006). The available data also allow us to study the
role of magmatic activity (both intrusive and extru-
sive) during the heavy bombardment, as well as
during more recent lunar history (i.e. the mare stra-
tigraphic record). Furthermore, the distribution of
basalt types, and the implied spatial and temporal
distribution of mantle melting, as well as volcanic
volumes and fluxes, can be understood. Finally,
the Moon is unique in that it allows us to assess a
wide range of eruption styles, including pyroclastic
activity, and their petrogenetic significance owing
to the existence and preservation of an assorted
suite of volcanic deposits (e.g. Hiesinger & Head
2006; Jaumann et al. 2012; Hiesinger & Jaumann
2014).

Igneous geochemistry

From the lunar sample collection it became appar-
ent that lunar rocks can be classified, on the basis
of texture and composition, into four distinct
groups: (1) pristine highland rocks that are primor-
dial igneous rocks, uncontaminated by impact
mixing; (2) pristine basaltic volcanic rocks, includ-
ing lava flows and pyroclastic deposits; (3) polymict
clastic breccias, impact melt rocks and thermally
metamorphosed granulitic breccias; and (4) the
lunar regolith. In the following paragraphs we will
only focus on highland rocks and mare basalts.
Although breccias may contain igneous fragments,
they are primarily produced by impacts and not by
magmatic/volcanic processes.

On the basis of their molar Ca/(Ca + Na + K)
content v. the molar Mg/(Mg + Fe) content of
their bulk rock compositions, pristine highland
rocks fall into two major chemical groups: ferroan
anorthosites and magnesium-suite rocks (e.g. War-
ner et al. 1976; Papike 1998). These rocks appear
to have different ages, with the ferroan anorthosites

being somewhat older (c. 4.56–4.29 Ga) than the
magnesian-suite rocks (high Mg/Fe) (4.46–
4.18 Ga) (Shearer et al. 2006). This latter group
contains dunites, troctolites, norites and gabbronor-
ites. Compared with these two rock types, the alkali
suite is less abundant. Although this group con-
tains similar rock types, they are enriched in alkali
and other trace elements relative to, and are some-
what younger than (4.37–3.80 Ga), the ferroan
anorthosites and the Mg-suite rocks (Shearer et al.
2006). This implies that the earliest Mg-suite rocks
were formed contemporaneously with at least some
ferroan anorthosite, which is not consistent with
the idealized magma-ocean model, in which fer-
roan anorthosites form the oldest crust and are
later intruded by younger, Mg-suite plutonic rocks.
An alternative model to the magma-ocean scenario,
which proposes a genesis of the lunar crust by intru-
sion of multiple magma bodies (i.e. serial magma-
tism) (e.g. Walker 1983; Longhi & Ashwal 1985;
Longhi 2003; Shearer et al. 2006; Borg et al. 2011),
appears to be more consistent with the observed
age relationships of lunar pristine rocks.

From the Apollo samples, it is known that anor-
thosite is common in the lunar highlands. Compared
with terrestrial rocks, the anorthosite abundances
(An96) of plagioclase in these rocks are much
higher, ultimately reflecting the Moon’s depletion
in volatile elements such as sodium (Lucey et al.
2006 and references therein). The Mg# (i.e. Mg/
Mg + Fe) of pyroxene and olivine in lunar anortho-
site is much more ferroan than in terrestrial rocks of
such high Ca/Na ratios and any other non-mare
lunar rocks (e.g. Lucey et al. 2006 and references
therein). Thus, ferroan anorthosite refers to lunar
anorthosite with plutonic or relict plutonic textures
(e.g. Dowty et al. 1974a, b). The ferroan-anorthositic
suite (Warren 1993) consists of ferroan anorthosites
(.90% plagioclase), as well as their more mafic but
less common variants, ferroan noritic anorthosite
and ferroan anorthositic norite. Pyroxene usually
predominates in the ferroan anorthosites, although
some samples also contain olivine. Lunar ferroan
anorthosites are coarse-grained intrusive igneous
rocks, formed during slow cooling at some depth
below the surface (Lucey et al. 2006). Because of
the high concentration of plagioclase feldspar in

Fig. 7. Examples of volcanic and tectonic features on the Moon. (a) Basaltic lava flow in Mare Imbrium. Note also
wrinkle ridges and secondary impact craters (Apollo 15 orbital photograph; AS15-M-1556). (b) Sinuous rille (Rima
Prinz) in Mare Imbrium (Lunar Reconnaissance Orbiter Camera (LROC) wide-angle camera (WAC)). (c) Basaltic lava
dome complex, situated within Mare Imbrium (LROC WAC). (d) Pyroclastic deposits located between Sinus Aestum
and Schröter crater. Asterisk marks the location of the inset showing a 170 m-diameter crater, which excavated fresh
pyroclastic material that is also termed dark mantle deposit (LROC WAC and NAC). (e) Rimae Goclenius graben
system in Mare Fecunditatis. Faults cut the volcanic plains and pre-existing craters (LROC WAC). (f) Dorsa Whiston in
Oceanus Procellarum represents a typical mare ridge (LROC WAC). Figures are adopted from Hiesinger & Jaumann
(2014).
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ferroan anorthosites, they are interpreted as cumu-
late rocks, produced by the separation and accu-
mulation of crystals from the remaining melt.
Compared with other lunar rocks, ferroan anortho-
sites are low in FeO and incompatible trace elements
(e.g. Th) (e.g. Lucey et al. 2006 and references
therein). The Apollo sample collection contains sev-
eral large, nearly monomineralic plagioclase rocks
(e.g. Warren 1990), and outcrops of ‘pure’ anortho-
site have also been identified from Earth-based and
spacecraft observations (Hawke et al. 2003; Ohtake
et al. 2009). However, its perceived importance
to lunar crustal formation has been challenged by
Lucey et al. (2006) because, although ferroan
anorthosite is the most common pristine rock type
at the Apollo 16 site, it is uncommon or rare at
other sites. On the basis of early inspection of the
Apollo samples, it was concluded that the lunar
highlands are dominated by ferroan anorthosite,
and that the ferroan-anorthositic suite component
of the crust is highly feldspathic. However, Lucey
et al. (2006 and references therein) pointed out
that the feldspathic lunar meteorites, geochemical
observations taken from orbit, and regolith samples
from Apollo 16 and Luna 20 suggest that highly
feldspathic ferroan anorthosite is not necessarily
typical of the highlands surface, at least not on
the Moon’s nearside. In fact, the majority of feld-
spathic lunar meteorites are more mafic than
the feldspathic material of the Apollo 16 regolith
(Korotev 1996, 1997; Korotev et al. 2003), and the
high Mg# of the upper feldspathic crust (70 + 3)
is at the high end for ferroan anorthosite. Together,
this implies that magnesian feldspathic rocks con-
tributed substantially to the make-up of the lunar
highlands (e.g. Lucey et al. 2006).

The magnesian suite possibly represents the
transition between magmatism associated with the
magma ocean and serial magmatism that occurred
between 30 and 200 Ma after the formation of that
ocean (Solomon & Longhi 1977; Longhi 1980;
Shearer & Newsom 2000). However, the exact dur-
ation of emplacement of the magnesian suite into
the lunar crust is still debated due to the lack of
deep sampling by impacts after 3.9 Ga, a function of
a decreasing impact flux. Taylor et al. (1993)
estimated that the magnesian rock suite constitutes
approximately 20% of the uppermost 60 km of the
crust, with the rest being composed of ferroan
anorthosite. However, other studies suggest smal-
ler amounts of magnesian- and alkali-suite rocks
are present (e.g. Jolliff et al. 2000; Korotev 2000).

Probably the most prominent evidence of volca-
nic activity on the Moon is the emplacement of mare
basalts that constitute the dark basin fills. In com-
parison to highland rocks, they are enriched in
FeO and TiO2, depleted in Al2O3, have higher
CaO/Al2O3 ratios, contain more olivine and/or

pyroxene, especially clinopyroxene, but contain
less plagioclase (e.g. Taylor et al. 1991). Mare
basalts most probably formed from remelting of
mantle cumulates produced by the early differen-
tiation of the Moon. The origin of KREEP basalts
(rich in K, Rare Earth Elements and P), however,
is likely to be related to remelting or assimilation
by mantle melts of a late-stage magma-ocean resi-
duum, the so-called ur-KREEP (Warren & Wasson
1979). There are numerous ways to distinguish
different basalt types, including through petrogra-
phy, mineralogy and chemistry (e.g. Neal & Taylor
1992; Papike et al. 1998). Taylor et al. (1991) uti-
lized their TiO2 abundances to define three basalt
types: very low-Ti (VLT) basalts (,1.5 wt% TiO2),
low-Ti basalts (1.5–9 wt% TiO2) and high-Ti
basalts (.9 wt% TiO2). On the basis of extensive
laboratory studies of TiO2 abundances of the lunar
samples and spectroscopy (e.g. Papike et al. 1976;
Papike & Vaniman 1978; Neal & Taylor 1992;
Papike et al. 1998), global maps of the major miner-
alogy–chemistry of the Moon with remote-sensing
techniques have been derived (e.g. Charette et al.
1974; Pieters 1978; Johnson et al. 1991; Melendrez
et al. 1994; Shkuratov et al. 1999; Giguere et al.
2000; Lucey et al. 2000). Because early interpreta-
tions of the Apollo and Luna data suggested that
lunar mare volcanism began with high-TiO2 basalts
that are older than later Ti-poor basalts, models
were proposed in which this perceived correlation
was coupled to the depth of melting (e.g. Taylor
1982). However, remote-sensing data indicate that
young basalts exist with high TiO2 concentrations
(e.g. Pieters et al. 1980); moreover, there are also
old (mostly .3 Ga) lunar basaltic meteorites that
are very low in Ti content (Cohen et al. 2000;
Terada et al. 2007). Finally, a combination of iron
and titanium maps (e.g. Lucey et al. 2000) and
crater size–frequency distribution measurements
across the nearside and farside did not reveal a dis-
tinct correlation between mare ages and composi-
tion (Hiesinger et al. 2001; Pasckert et al. 2014).
Thus, FeO and TiO2 concentrations varied indepen-
dently with time, whereas TiO2 (FeO)-rich and TiO2

(FeO)-poor basalts erupted contemporaneously.
The geochemistry of returned lunar samples

suggests that the ultramafic sources of mare basalts
are complementary to the anorthositic crust (e.g.
Wieczorek et al. 2006) and that the Moon is, there-
fore, differentiated. To explain these observations,
the magma-ocean model was developed (e.g. Smith
et al. 1970; Wood et al. 1970; Warren & Wasson
1979; Warren 1990). The model assumes that large
parts of the Moon were initially molten, such
that a global, several-hundred-metres-thick magma
ocean formed. Although the details of the crystal-
lization of such a magma ocean are not fully under-
stood, it is likely that the early crystallization of
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olivine and orthopyroxene produced cumulates in
the deeper parts of the magma ocean because they
were denser than coexisting melt (Shearer et al.
2006 and references therein). With time, early
magnesium-rich cumulates became increasingly
iron-rich. As a consequence of the early crystalliza-
tion of Fe- and Mg-rich minerals, the melt became
richer in Al and Ca, which in turn resulted in the
crystallization of plagioclase after about 75–80%
magma-ocean solidification. As plagioclase was
less dense than its source melt, it eventually formed
the anorthositic highland crust. Finally, continued
crystallization of the magma ocean yielded a glob-
ally asymmetric distribution of KREEP elements.
On the basis of lunar samples, it became apparent
that the main phases of the magma ocean were com-
pletely crystallized by about 4.4 Ga. The KREEP
residue was solid at about 4.36 Ga. In such a crystal-
lization sequence, it is plausible that the later-
formed, denser, iron-rich cumulate mantle overly-
ing the earlier, less dense magnesium-rich mantle
cumulates was gravitationally unstable, resulting
in the development of an overturn of the cumulate
mantle. Such an overturn might have delivered
cold, dense, incompatible-element-rich material
to the core–mantle boundary. Simultaneously, hot
rising mantle plumes may have melted adiabati-
cally to produce the first basaltic resurfacing crust
of the Moon (i.e. the early mare basalts).

Volcanic landforms

The Moon hosts a wide variety of volcanic land-
forms, including lava flows, cones, domes, shield
volcanoes, sinuous rilles, pyroclastic deposits and
cryptomaria (e.g. Hiesinger & Head 2006; Spudis
et al. 2013) (Fig. 7). Since the Russian Luna 3 mis-
sion in 1959, it has been known that lunar basalts
are concentrated on the nearside. Many basalt
deposits are located in the interiors of low-lying
impact basins. Globally, mare basalts cover 7 ×
106 km2, or 17%, of the total lunar surface –
amounting to 1% of the lunar crustal volume
(Head 1976; Wilhelms 1987; Hiesinger & Head
2006) (Fig. 6). Although the specific details of
mare basalt petrogenesis are still not fully under-
stood, the presence of radioactive elements (e.g.
K, U and Th) most probably resulted in the for-
mation of partial melts of ultramafic mantle material
at depths of between about 60 and 500 km (e.g. Wil-
helms 1987; Hiesinger & Head 2006).

Lava flows. Mare basalts were formed by large
volumes of low-viscosity, high-temperature basal-
tic lava, which resurfaced vast areas (i.e. c. 30% of
the lunar nearside) (Head 1976; Wilhelms 1987).
In fact, laboratory measurements of molten lunar
basalts indicate that their viscosity is only a few

tens of poise at 1200 8C, allowing them to flow for
long distances across the surface before solidifying
(Hörz et al. 1991). Lava flows several tens of
metres thick extending for hundreds to thousands
of kilometres across Mare Imbrium have been docu-
mented (Schaber 1973; Schaber et al. 1976) (Fig.
7a). Thin lava flows similar to those in Mare
Imbrium have been observed elsewhere on the
Moon: within the Hadley Rille at the Apollo 15
landing site, for example. However, many lunar
lava flows lack distinctive flow fronts due to their
very low viscosities, high eruption rates, ponding
of lava in shallow depressions, subsequent destruc-
tion by impact processes and/or burial by youn-
ger flows. Similarly, volcanic vents in the mare
regions are rare because they were probably
covered by the erupting basalts or were degraded
by subsequent impacts.

Sinuous rilles. Sinuous rilles (Figs 6 & 7b) are
meandering channels that often start at a crater-like
depression and end by grading downslope into the
smooth mare surface (Greeley 1971). Most such
rilles originate along the margins of the basins and
trend towards the basin centre. These channels
range in width from a few tens of metres to approxi-
mately 3 km, from a few kilometres to up to 300 km
in length and are, on average, 100 m deep (Schubert
et al. 1970; Hurwitz et al. 2012, 2013a). The Apollo
15 mission investigated one of these sinuous rilles,
Rima Hadley, in detail. Despite early interpreta-
tions of sinuous rilles as lunar rivers (e.g. Lingenfel-
ter et al. 1968; Peale et al. 1968), no evidence for
water or pyroclastic flows was found and so it was
concluded that sinuous rilles formed by thermal
erosion, resulting in widening and deepening of
channelled lava flows due to the melting of the
underlying rock by very hot lavas (Hulme 1973;
Coombs et al. 1987; Williams et al. 2000; Hurwitz
et al. 2012, 2013a). Lower gravity, higher melt
temperatures, lower viscosities and higher extru-
sion rates might be responsible for the much larger
sizes of lunar sinuous rilles compared with lava
tubes and channels on Earth. Bussey et al. (1997)
and Fagents & Greeley (2001) showed that the
process of thermal erosion is very sensitive to the
physical conditions in the boundary layer between
lava and solid substrate. They found that thermal
erosion rates depend on the slopes, effusion rates
and thermal conductivities of the liquid substrate
boundary layer.

Cryptomaria. Cryptomaria are mare-like volcanic
deposits that later were covered with lighter-
coloured material (e.g. ejecta from craters and
basins) (Head & Wilson 1992). These deposits can
be studied with several techniques, including inves-
tigations of dark halo craters (e.g. Schultz & Spudis
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1979, 1983; Hawke & Bell 1981), multispectral
images (e.g. Head et al. 1993; Greeley et al. 1993;
Blewett et al. 1995; Mustard & Head 1996) and
orbital geochemical observations (e.g. Hawke &
Spudis 1980; Hawke et al. 1985). These studies
have shown that if cryptomaria are included, the
total area covered by mare deposits exceeds 20%
of the lunar surface, compared with about 17% of
typical mare deposits alone (Head 1976; Antonenko
et al. 1995). Thus, cryptomaria not only indicate
a wider spatial distribution of ancient volcanic pro-
ducts but also reveal that mare volcanism was
already active prior to the formation of the Orientale
basin (i.e. the youngest basin on the Moon) and the
emplacement of its ejecta, which is an important
stratigraphic marker horizon. Although Giguere
et al. (2003) and Hawke et al. (2005) reported that
the buried basalts in the Lomonosov–Fleming and
the Balmer–Kapteyn regions are very-low- to
intermediate-Ti basalts, sampling and subsequent
analyses are required to understand the true nature
of cryptomaria.

Domes, cones and shields. A small fraction of
the vast mare regions is covered by positive topo-
graphical surface features, such as domes, cones
and shields, that measure up to several tens of kilo-
metres across, are up to several hundred metres
high and are basaltic in composition (Head &
Gifford 1980). Lunar cinder cones are often asso-
ciated with lunar sinuous rilles (e.g. in Alphonsus
crater; Head & Wilson 1979), are less than 100 m
high, 2–3 km wide, have summit craters of less
than 1 km diameter and have very low albedos
(Guest & Murray 1976).

Lunar mare domes are generally broad, convex,
semi-circular landforms with relatively low topo-
graphical relief (Fig. 7c). For example, Guest &
Murray (1976) mapped 80 mare domes with diam-
eters of 2.5–24 km, 100–250 m heights and 28–
38 slopes; most of them occur in the Marius Hills
complex. Some of the Marius Hills domes are
characterized by steeper slopes (78–208) and some
have summit craters or fissures. Most probably,
the mare domes were formed by eruptions of more
viscous (i.e. more silicic) lavas, intrusions of shal-
low laccoliths or mantling of large blocks of older
rocks with younger lavas (e.g. Heather et al. 2003;
Lawrence et al. 2005). Large shield volcanoes
(.50 km) are common on Earth, Venus and Mars,
and are constructive features: that is, they consist
of a large number of small flows derived from a
shallow magma reservoir where the magma reaches
a neutral buoyancy zone (e.g. Ryan 1987; Wilson
& Head 1990; Head & Wilson 1992). Thus, the
presence of shield volcanoes and calderas implies
shallow buoyancy zones, the stalling and evolu-
tion of magma there, leading to numerous eruptions

of small volumes and durations, and shallow magma
migration that causes caldera collapse. How-
ever, no shield volcanoes larger than about 20 km
in diameter have been identified on the Moon
(Guest & Murray 1976). This observation indi-
cates that shallow buoyancy zones do not occur on
the Moon, and that lavas did not extrude in con-
tinuing sequences of short-duration, low-volume
eruptions from shallow reservoirs. However, there
is evidence that in a few locations magma may
have stalled near the surface to form shallow sills
or laccoliths, as possibly indicated by the formation
of floor-fractured craters (Schultz 1976; Wichman
& Schultz 1995, 1996) (see below).

Apart from the basaltic domes in the mare
regions, there are also domes that are plausibly
linked to non-mare volcanism. These landforms
are much less abundant than those associated with
basaltic volcanism, are characterized by slopes
steeper than those of mare domes, and exhibit a
high albedo and a strong absorption in the ultravi-
olet (Malin 1974; Wood & Head 1975; Head et al.
1978; Chevrel et al. 1999; Hawke et al. 2003).
Braden et al. (2010) and Tran et al. (2011) used
Lunar Reconnaissance Orbiter Camera (LROC)
stereo images to study the topography of mare and
non-mare domes. Volcanic constructs with shal-
low flank slopes (,108) are associated with prefer-
entially low-viscosity eruptions, whereas steeper
slopes (.208) tend to indicate high-viscosity,
silica-rich eruptions of lava that are more viscous
than mare basalts (Hawke et al. 2003; Wilson &
Head 2003; Glotch et al. 2011). The Marius Hills
complex is a key locality for the first type of
dome; the Gruithuisen domes are excellent exam-
ples of the second type. However, some domes in
the Marius Hills complex display relatively steep
slopes (Tran et al. 2011), indicating that localized
eruptions of higher-silicic lavas occurred, confirm-
ing the LROC and Chandrayaan-1 Terrain Map-
ping Camera (TMC) results of Lawrence et al.
(2010) and Arya et al. (2011), respectively. Detailed
morphological and spectral studies of non-mare
domes (e.g. Gruithuisen and Hansteen Alpha), as
well as domes associated with the Compton–Belk-
ovich thorium anomaly, using LROC and LRO
Diviner data are consistent with high-viscosity,
silicic, non-mare volcanism (Braden et al. 2010;
Glotch et al. 2011; Hawke et al. 2011; Jolliff et al.
2011). Lunar Prospector gamma-ray data revealed
that several domes exhibit high Th concentrations
(Lawrence et al. 2003; Hagerty et al. 2006), and in
LRO Diviner data the domes are characterized by
elevated silica contents (Glotch et al. 2011). Some
of the non-mare domes show a very specific spec-
tral behaviour in the ultraviolet spectrum and are
known as ‘red spots’. Red spots show a much wider
range in morphology, and also include bright
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shields and bright smooth plains with little topogra-
phical expression (Bruno et al. 1991; Hawke et al.
2003). Because of their unique characteristics, it is
thought that red spots have been formed by more
viscous lava, comparable to, for example, terrestrial
dacites or rhyolites (Hawke et al. 2003; Wilson &
Head 2003).

Pyroclastic volcanism. There are two types of pyro-
clastic deposit that have been identified on the
surface of the Moon: extensive regional pyroclastic
deposits (.1000 km) located on the uplands adja-
cent to younger maria (e.g. Gaddis et al. 1985;
Weitz et al. 1998); and smaller pyroclastic deposits
that are more widely dispersed across the lunar
surface (Head 1976; Hawke et al. 1989; Coombs
et al. 1990). Most pyroclastic deposits are concen-
trated in localized areas but some may cover
larger areas, in excess of 2500 km2 (e.g. Head et al.
2002; Hiesinger & Head 2006) (Figs 6 & 7d). It has
been proposed that regional dark-mantle depos-
its were formed by eruptions in which continuous
gas exsolution in the lunar environment caused
Hawaiian-style fire fountaining that distributed
pyroclastic material over tens to hundreds of kilo-
metres (Wilson & Head 1981, 1983). Substantial
progress in understanding the ascent and eruption
conditions of pyroclastic deposits has been made
(e.g. Head et al. 2002; Shearer et al. 2006). The
Apollo 17 orange glasses and black vitrophyric
beads, for example, formed during lava fountaining
of gas-rich, low-viscosity, Fe–Ti-rich basaltic mag-
mas (Heiken et al. 1974). Crystallized black beads
from the Apollo 17 landing site had cooling rates
of 100 8C s21, which is much slower than expected
from black-body cooling in a vacuum (Arndt & von
Engelhardt 1987). Apollo 17 is not the only land-
ing site where pyroclastic glass beads have been
identified. Rather, the Apollo 15 green glasses are
also volcanic in origin, as are other pyroclastic
glasses found in the regolith of other landing sites
(Delano 1986). In comparison to mare basalts, the
volumes of pyroclastic deposits are trivial. How-
ever, they demonstrate that lava fountaining oc-
curred on the Moon. In addition, because of the
presumably fast ascent and cooling history of pyro-
clastic materials, they are thought to be unmodified
by crystal fractionation. Thus, volcanic glass beads
are plausibly the best samples for studying the
lunar mantle. Pyroclastic eruptions resulted in the
emplacement of dark mantled deposits that cover
areas of the lunar surface large enough to be vis-
ible in remotely sensed data (e.g. Hawke et al.
1979, 1989; Head & Wilson 1980; Gaddis et al.
1985; Coombs et al. 1990; Greeley et al. 1993;
Weitz et al. 1998; Weitz & Head 1999; Head et al.
2002). In remote-sensing data, it is apparent that
pyroclastic deposits often tend to occur along the

margins of impact basins, and in association with
vents and sinuous rilles, implying that they were
formed by sustained, large-volume eruptions. In
addition, at least some of the observed dark-halo
craters are volcanic (i.e. pyroclastic) in origin,
whereas others are impact craters that excavated
darker material from the subsurface. Commonly,
the volcanic dark-halo craters preferentially occur
along fractures and on the floors of larger craters.
From studies of dark-halo craters within Alphonsus
crater, it appears likely that they were formed by
vulcanian-style eruptions (Head & Wilson 1979;
Coombs et al. 1990).

Ages of volcanic deposits. On planetary surfaces, the
number of impacts on a specific surface unit can be
correlated with the time that this unit was exposed to
bombardment by asteroids and comets: the higher
the crater frequency, the greater the age of the unit
(e.g. Öpik 1960; Baldwin 1964; Neukum et al.
1975a, b, 2001; Basaltic Volcanism Study Project
1981). Thus, the frequency of craters superimposed
on a specific surface unit at a given diameter,
or range of diameters, is a direct measure of the
relative age of the unit (e.g. Arvidson et al. 1979;
Basaltic Volcanism Study Project 1981; Neukum
& Ivanov 1994; Neukum et al. 2001). The strati-
graphic record of geological events on the Moon
was studied in detail in preparation for, and follow-
ing, the US and Russian lunar missions (e.g. Shoe-
maker & Hackman 1962; Wilhelms & McCauley
1971; Wilhelms 1979, 1987). Those studies, in
concert with radiometric dating of lunar samples,
revealed that the lunar highlands are generally older
than the mare regions (e.g. Wilhelms 1987), that
mare volcanism occurred over an extended period
of time (e.g. Shoemaker & Hackman 1962; Carr
1966; Hiesinger et al. 2000, 2003, 2011) and that
there is considerable variation in the mineralogy of
basalts of different ages (e.g. Soderblom et al. 1977;
Pieters et al. 1980; Hiesinger et al. 2000). Accurate
mare basalt ages are important data as they help
characterize the duration and the flux of lunar vol-
canism, the petrogenesis of lunar basalt and the rela-
tionship of volcanic activity to the thermal evolution
of the Moon.

Hiesinger et al. (2000, 2003, 2011, 2012) dated
basalts in Oceanus Procellarum, Imbrium, Sereni-
tatis, Tranquillitatis, Humboldtianum, Australe,
Humorum, Nubium, Cognitum, Nectaris, Frigoris
and numerous smaller occurrences. They found
that: (1) in the studied locations, lunar volca-
nism was active for almost 3 Ga, starting at about
4.0–3.9 Ga and ceasing at around 1.2 Ga; (2) most
basalts were erupted during the late Imbrian
Period, at about 3.8–3.6 Ga; (3) substantially fewer
basalts were emplaced during the Eratosthenian
Period (3.2–1.1 Ga); and (4) basalts of possible
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Copernican age (,1.1 Ga) are found only in limited
areas within Oceanus Procellarum (Hiesinger et al.
2000, 2003, 2011, 2012). From these results it
is also apparent that older mare basalts preferen-
tially occur in the eastern and southern lunar near-
side, and in patches of maria peripheral to the
larger maria, in contrast to the younger basalt ages
on the western nearside, for example, those in
Oceanus Procellarum. Although older basalts cer-
tainly also erupted in the western mare areas prior
to the emplacement of younger flows, young vol-
canism only occurred in the western hemisphere,
and has been related to the concentration of heat-
producing elements there. Mare basalts on the cen-
tral lunar farside erupted between 3.5 and 2.7 Ga,
which is well within the range of ages found for
the nearside mare basalts (Morota et al. 2011;
Pasckert et al. 2014). However, farside mare vol-
canism ceased earlier than on the nearside, which
might be a consequence of either a thicker crust or
reduced abundances of radioactive elements in the
farside mantle.

On the Moon, volcanism apparently resulted
from the partial melting of mantle rocks. The
decay of naturally radioactive elements resulted in
the production of partial melts of mostly basaltic
composition (45–55% SiO2, and relatively high
MgO and FeO content), requiring temperatures
of .1100 8C and depths of .150–200 km (Hörz
et al. 1991). Radiometric ages of returned lunar
samples reveal that most volcanic eruptions stop-
ped at approximately 3 Ga (Hörz et al. 1991). This
finding was interpreted as evidence for an early
cooling of the mantle below the temperature necess-
ary to produce partial melts. However, this inter-
pretation is inconsistent with crater counts on mare
basalt surfaces, which indicate that some basalts
erupted as ‘recently’ as about 1–2 Gyr ago (Hie-
singer et al. 2003, 2011). Some geophysical models
of the thermal evolution of the Moon suggest that
the zone of partial melting necessary for the pro-
duction of basaltic magmas migrated to depths too
great for melts to reach the surface approximately
3.4–2.2 Gyr ago (e.g. Spohn et al. 2001). How-
ever, taking into account the insulating effects
of a porous megaregolith, the interior can be kept
warm enough to explain late-stage volcanic erup-
tions until about 2 Ga (Ziethe et al. 2009). More-
over, a non-uniform distribution of heat-producing
elements in the mantle, as indicated by Lunar Pro-
spector data, could extend the potential for melting
to even more recent times.

Detailed crater size–frequency distribution
measurements revealed that the two Gruithuisen
domes in the northern Oceanus Procellarum region
appear to be contemporaneous with the emplace-
ment of the surrounding mare basalts, but post-
date the formation of post-Imbrium crater Iridum

(Wagner et al. 1996, 2002). Head et al. (2000) inter-
preted this contemporaneity with the maria as evi-
dence for a petrogenetic link; one possibility is
that mare diapirs stalled at the base of, and partially
remelted, the crust, which produced the more
silicic viscous magmas of the domes. Crater size–
frequency distribution measurements were also
performed for red spots in southern Oceanus Pro-
cellarum and Mare Humorum, and indicate a wide
range of ages. For example, Hansteen Alpha is
about 3.74–3.56 Ga old, and so is slightly younger
than the Gruithuisen domes but post-dates craters
Billy (3.88 Ga) and Hansteen (3.87 Ga). However,
Hansteen Alpha is older than the surrounding mare
materials (3.51 Ga) (Wagner et al. 2010). NE of
Mare Humorum, red-spot light plains associated
with a feature named ‘The Helmet’ (investigated
in detail by Bruno et al. 1991) range in age from
3.94 Ga (Darney x) to 2.08 Ga (Wagner et al.
2010). The ages of the Gruithuisen domes and of
Hansteen Alpha show that high-silica, more vis-
cous non-mare volcanism was active in a shorter
time interval than mare volcanism activity, and
appears to be restricted to more or less the Late
Imbrian Epoch, at least in these two investigated
areas (Wagner et al. 2002, 2010). However, a non-
volcanic origin for the red-spot light plains cannot
be excluded on the basis of the data currently avail-
able (Wagner et al. 2010 and references therein).

Tectonism

The Moon is a so-called one-plate or stagnant-lid
planetary body (e.g. Solomon & Head 1979, 1980;
Spohn et al. 2001; Hiesinger & Head 2006). Crys-
tallization of the magma ocean resulted in a glob-
ally continuous, low-density crust that may have
hindered the development of plate tectonics early
in lunar history. Once such a nearly continuous,
low-density crust or stagnant lid was established,
conductive cooling dominated the transfer of heat
from the Moon’s interior to its surface. This resulted
in the production of a globally continuous litho-
sphere rather than multiple, moving and subducting
plates as on Earth. The heat flows measured at some
of the Apollo landing sites are much lower than
those on Earth (e.g. Langseth et al. 1976), and are
consistent with heat loss predominantly by conduc-
tion. The large ratio of surface area to volume has
been very effective in cooling the Moon by conduc-
tion (i.e. by radiating heat into space). Thus, it is
thought that the lithosphere of the Moon thickened
rapidly, and so the Moon became a one-plate planet
quickly, losing most of its heat through conduction
(Solomon 1978). Support for this model comes
from nearside seismic data that indicate the pres-
ence of a relative rigid, 800–1000 km-thick litho-
sphere (Nakamura et al. 1973; Spohn et al. 2001;
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Wieczorek et al. 2006). In summary, the crust of the
Moon appears to be thick, rigid, immobile and cool,
inhibiting large-scale motion. The lack of plate
tectonics-style crustal deformation is consistent
with the returned samples, which show virtually
no textures typical of plastic deformation.

On the Moon, tectonic deformation is caused by:
(1) impact-induced stress; (2) stress induced by the
load of basaltic materials within impact basins; (3)
thermal effects; and (4) tidal forces (e.g. Hiesinger
& Head 2006), producing mostly extensional and
contractional features (e.g. faults, graben, dykes
and wrinkle ridges).

Models of lunar thermal evolution indicate that,
during the first billion years, the lunar crust was
subject to extensional stresses produced by thermal
expansion, and that, during the following 3.5 Ga
until the present, compressional stresses have domi-
nated due to cooling and contraction (e.g. Solomon
& Chaiken 1976). However, these thermal mod-
els have numerous unconstrained parameters that
have influence on the model predictions for the
evolution of the planetary radius and the resulting
stress field (e.g. Pritchard & Stevenson 2000).
Although the early stresses in the lunar crust are
not accurately known, Solomon & Head (1979) pro-
posed that graben that are related to the loading by
basaltic flows of basin centres could only form in
the presence of global, mildly tensile stresses.
Pritchard & Stevenson (2000) pointed out that the
end of graben formation at 3.6 Ga cannot be used
to decipher the ancient global lunar stress field
because local effects including flexure and mag-
matic activity (i.e. diapirism) could mask the signal.
However, after about 3.6 Ga, the lunar stress field
became compressional, and internally driven tec-
tonic activity may have ceased for 2.5–3 Gyr,
until sufficient stress (.1 kbar) had accumulated
to produce small-scale thrust faults.

Tidal effects due to the Earth–Moon gravita-
tional interaction would have been more intense
early in lunar history, when the Moon was closer
to Earth. In fact, early lunar tectonic activity may
have been dominated by tidal stresses, and
internally generated stresses may have been less
important. However, the spatial distribution of
lineaments mapped on the lunar surface is similar
on the near- and farside, and thus is probably inde-
pendent of tidal forces (e.g. the collapse of a tidal
bulge) (Chabot et al. 2000). In particular, Watters
et al. (2010) argued that the spatial distribution of
small young lobate scarps is inconsistent with an
origin related to tidal deformation. They concluded
that a global contraction of the lunar radius by
100 m over the last 1 Gyr could explain the
observed pattern and calculated stresses.

In the following paragraphs, we describe briefly
some of the tectonic landforms on the Moon,

including graben, wrinkle ridges, lobate scarps and
floor-fractured craters.

Graben. Impacts are capable of creating radial and/
or concentric extensional troughs or graben (e.g.
Ahrens & Rubin 1993), and impact-induced faults
may be reactivated by seismic energy (e.g. Schultz
& Gault 1975). Loading of impact basins with basal-
tic infill causes the development of extensional stres-
ses at the edges of the basins and the formation of
arcuate troughs or rilles there (e.g. Solomon & Head
1979, 1980; Wilhelms 1987) (Fig. 7e). Towards the
basin interior, compressional stress due to down-
warping of the basin centre leads to the formation
of subradial and concentric ridges (Solomon &
Head 1979, 1980; Freed et al. 2001) (Fig. 7f). Con-
centric graben around the Humorum basin are a few
hundred kilometres long and are filled with basaltic
lavas. Thus, they are evidence of early extensional
forces in this area. Because these graben extend vir-
tually unobstructed from the mare into the adjacent
highlands and cut across pre-existing craters, their
formation was possibly related to a substantial,
deep-seated, basin-wide stress field.

Wrinkle ridges. Wrinkle ridges are common land-
forms on terrestrial planets (Figs 6 & 7f). On the
Moon, the spatial dimensions of wrinkle ridges
range from several kilometres up to 10 km in
width, tens to hundreds of km in length and their
average heights are of the order of 100 m (Wilhelms
1987). Lucchitta (1976) proposed that wrinkle
ridges are caused by thrust faulting and folding, a
model also favoured by Golombek (1999) and
Golombek et al. (2000) on the basis of high-
resolution topographical data of Martian wrinkle
ridges. Although wrinkle ridges on the Moon are
commonly interpreted as thrust faults formed by
compressive stresses (e.g. Hodges 1973; Lucchitta
1976; Solomon & Head 1979, 1980; Plescia &
Golombek 1986; Schultz & Zuber 1994; Golombek
1999; Golombek et al. 2000; Hiesinger & Head
2006), some may have an origin linked to the
emplacement of magma in the subsurface (e.g.
Strom 1964; Hartmann & Wood 1971). Observed en
echelon offsets of wrinkle ridges in Mare Sereni-
tatis were interpreted as evidence of compressional
stresses. The wrinkle ridges in Mare Serenitatis are
concentric to the basin, and Muehlberger (1974)
and Maxwell (1978) estimated a centrosymmetric
foreshortening of approximately 0.5–0.8% in order
to produce the ridges. Ground-penetrating radar
(GPR) data from the Apollo Lunar Sounding Exper-
iment (ALSE) revealed substantial upwarping, and
possibly folding and faulting of the basaltic sur-
face down to about 2 km below the wrinkle ridges.
Recent work has shown that deep-seated faults
that penetrate approximately 20 km into the lunar
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lithosphere underlie wrinkle ridges in Mare Cri-
sium (Byrne et al. 2014c).

Lobate scarps. Although wrinkle ridges and graben
dominate the tectonics of the nearside maria, lobate
scarps are the dominant tectonic landform on the
farside (Watters & Johnson 2010; Watters et al.
2010). Lunar lobate scarps are characterized by
steep scarp faces and by linear or curvilinear asym-
metric forms with arcuate fault surfaces, and con-
sist of a series of smaller, connected structures that
form complexes. Scarp complexes have lengths of
up to about 10 km, occur in sets of up to 10 individ-
ual structures and commonly are less than appro-
ximately 100 m high (e.g. Binder 1982, 1986;
Binder & Gunga 1985; Watters et al. 2010; Banks
et al. 2012; Williams et al. 2013; Clark et al.
2014). Schultz (1972) realized that the scarps were
very young and based on crater degradation mea-
surements, Binder & Gunga (1985) estimated the
ages of lobate scarps found in Apollo Panoramic
Camera images to be ,1 Ga. Such young ages are
generally consistent with crater size–frequency
measurements (van der Bogert et al. 2012), their
relatively undegraded appearance and their cross-
cutting relationships with small craters (Watters &
Johnson 2010; Watters et al. 2010). Thus, Watters
et al. (2010) proposed that the lobate scarps are
evidence of late-stage contraction of the Moon,
and that the estimated strains accommodated by
these small scarps are consistent with thermal
history models that predict low-level compressional
stresses and relatively small changes (100–1000 m)
in lunar radius. Although thermal history models
for either a nearly or totally molten early Moon, or
an early Moon with an initially hot exterior (i.e.
a magma ocean) and a cool interior, predict late-
stage compressional stresses in the upper crust and
lithosphere, the timing of scarp formation and the
estimated stress levels are more consistent with the
magma-ocean hypothesis (e.g. Watters et al. 2010).

Floor-fractured craters. Numerous impact craters
on the Moon exhibit an extensive system of frac-
tures and graben on their floors (Fig. 6). Schultz
(1976) proposed that fracturing of lava-filled cra-
ter floors (e.g. crater Gassendi) might be related to
isostatic uplift of the floor materials and expansion
due to the emplacement of sills below the crater
floor. Support for this interpretation comes from the
geophysical models of Wichman & Schultz (1995,
1996) and Dombard & Gillis (2001). Wichman &
Schultz (1996) estimated the minimum depth of a
30 km-wide and 1900 m-thick intrusion beneath
crater Tauruntius to be of the order of 1–5 km,
resulting in an excess pressure of around 9 MPa.
Similarly, on the basis of their model, Dombard &
Gillis (2001) concluded that, compared with topo-
graphical relaxation, laccolith emplacement is the
more viable formation process. More recent stud-
ies utilizing gravity data acquired by the Grav-
ity Recovery and Interior Laboratory (GRAIL)
mission demonstrated the presence and dynam-
ics of magmatic intrusive bodies beneath floor-
fractured craters (Jozwiak et al. 2014; Thorey &
Michaut 2014).

Mars

Early Mars exploration by flybys of the Mariner 4,
6 and 7 spacecraft, and orbital observations by the
Mariner 9 and Viking Orbiter I and II missions,
revealed extensive volcanic surfaces and large vol-
canic edifices on the Red Planet (McCauley et al.
1972; Greeley & Spudis 1981). In the seminal
paper of Greeley & Spudis (1981), most of the vol-
canic landforms were categorized into large shield
volcanoes (e.g. Olympus Mons and the three Tharsis
Montes, Arsia, Pavonis and Ascraeus), steep-sided
domes (e.g. Tharsis Tholus) and highland paterae
(e.g. Tyrrhenus and Hadriacus Montes) (Fig. 8) –
the latter being the only large-scale volcanic

Fig. 8. The distribution of volcanic units, edifices and tectonic structures on Mars (adopted from Tanaka et al. 2014).
Unit names consist of (1) age, (2) unit group and (3) unit subtype; (1) stratigraphic periods include: A, Amazonian; H,
Hesperian; N, Noachian; with epochs shown in lower case (i.e. e, Early; l, Late); (2) a, apron; h, highlands; i, impact;
v, volcanic; (3) e, edifice; f, field. Note that only Amazonian–Hesperian impact craters are shown, which may superpose
volcanic units. Units Aa and lAa located around Olympus Mons, and west of the Tharsis Montes, respectively, represent
edifice-derived volcaniclastic material. Mapped Noachian highland edifices may be volcanic constructs; those located in
Sisyphi Planum are not shown at this map scale. All unit contacts are displayed as certain contacts for clarity. Symbols
for graben and wrinkle ridges have been modified from the source (Tanaka et al. 2014). The locations of low-shield
volcanoes are from Hauber et al. (2011), Platz & Michael (2011), and Manfredi et al. (2012). Note there exist more
low-shield volcanoes in Tharsis; those present in Elysium Planitia are not included. Major volcanic provinces are
abbreviated as CHVP, Tharsis, Elysium and Syrtis Major. A, Apollinaris Mons; Al, Alba Mons; Ar, Arsia Mons;
As, Ascraeus Mons; CHVP, Circum-Hellas Volcanic Province; H, Hadriacus Mons; He, Hecates Tholus; LP, Lunae
Planum; O, Olympus Mons; P, Pavonis Mons; SP, Syria Planum; T, Tyrrhenus Mons; VM, Valles Marineris. The star
shows the approximate location of Eden Patera (Michalski & Bleacher 2013). The map has a Robinson projection,
centred at 08E; the background image is a Mars Orbiter Laser Altimeter (MOLA)-derived shaded-relief image
(0.46 km/px).
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landforms attesting to explosive volcanism in early
Mars history (Fig. 8). Extensive volcanic plains
associated with large edifices were recognized and
grouped into volcanic provinces, with Tharsis and
Elysium being the largest, most active and longest-
lived (e.g. Neukum et al. 2004, 2010; Hauber et al.
2011; Platz & Michael 2011). Greeley & Spudis
(1981) found that volcanic activity on Mars spans
the entire planet’s history, and is recorded over
large portions of its surface (Fig. 8). Major volcanic
landforms, including large volcanic provinces and
associated shield volcanoes, pyroclastic cones, lava
flows, and fall-out deposits, are reviewed in the
following subsections.

Volcanism

Volcanic provinces. The Tharsis region is the
most dominant locus of volcanic activity on Mars,
extending more than 6000 km (NNE–SSW) by
3500 km (east–west). This region has been mainly
formed by five large volcanoes, with summit
elevations of up to 21 km (Olympus Mons, Alba
Mons and the Tharsis Montes). Several smaller
volcanoes, known as paterae and tholi (Uraunius,
Biblis, Ulysses Paterae and Tharsis, Ceraunius (Fig.
9a), Uraunius, and Jovis Tholi), are also present
(Fig. 8). More than 700 small, low-shield volcanoes
(Fig. 9b), vents and fissures located in summit cal-
deras, on edifice flanks, at the periphery of large
shield volcanoes or within fractured terrain have
also been identified so far. Particularly noteworthy
are two low-shield fields in Sinai Planum (Baptista
et al. 2008; Hauber et al. 2011; Richardson et al.
2013) and Tempe Terra (Davis & Tanaka 1993;
Hauber et al. 2011) (Fig. 8).

The majority of volcanic material in the Tharsis
volcanic province was erupted in the Noachian
Period (.3.71 Ga) to Early Hesperian Epoch (3.71–
3.61 Ga), with infrequent eruptions thereafter
scattered throughout the Late Hesperian Epoch
(3.61–3.37 Ga) and Amazonian Period (3.37 Ga–
present) (Neukum & Hiller 1981; Greeley &
Schneid 1991; Neukum et al. 2004, 2010; Werner
2009) (Fig. 8). More recently, lava flows as young
as 2 Ma were discovered, which are mostly related
to low-shield volcanoes or late-stage effusive
events (Neukum et al. 2004; Vaucher et al. 2009;
Hauber et al. 2011; Platz & Michael 2011). Vol-
canic activity associated with partial caldera col-
lapse at the summit of most large shield volcanoes
has also occurred in the Middle–Late Amazonian
(Werner 2009; Robbins et al. 2011). The total pro-
duction of magma (i.e. intrusive and extrusive)
within the Tharsis region is estimated to be about
3 × 108 km3 (Phillips et al. 2001). However, to date,
no data exist on what percentage of that volume was
erupted during each of the three Martian periods
(i.e. the Noachian, Hesperian and Amazonian).

The Elysium volcanic province (Fig. 8) is
located in the eastern hemisphere of Mars, and
comprises the 14 km-tall Elysium Mons and the
smaller Albor and Hecates Tholi, all of which are
situated on the broad, .1200 km-wide Elysium
rise. The Elysium rise itself developed on the SE
rim of the approximately 3300 km-diameter Utopia
impact basin, which is thought to have formed at
approximately 4.1 Ga (Frey et al. 2007; Frey 2008).
This province comprises lava flow plains and
reworked volcaniclastic material, which together
extend over an area of approximately 3.4 × 106

km2 (Tanaka et al. 2005). The total minimum

Fig. 9. Examples of volcanic and tectonic features on Mars. (a) Ceraunius Tholus, a large shield volcano, located in the
Tharsis region between Ascraeus Mons and Tempe Terra. It is a large shield volcano partially buried by the surrounding
lava plains. From its central caldera a large valley emanates towards the north which formed a delta within the Rahe
impact crater. Rahe’s butterfly-shaped ejecta blanket is clearly visible. Scale bar is 25 km (HRSC image mosaic; ESA/
DLR/FU Berlin (Gerhard Neukum)). (b) Low-shield volcano located south of Ascraeus Mons at 3.18N, 106.88W. The
edifice is partially buried by external lava flows; channel and levée morphologies are partially visible. The edifice’s
summit is marked by two aligned and elongated craters. Lava flows emanated radially from the vents. Scale bar is 2 km
(context camera [CTX] image P06_003185_1824). (c) Zephyria Tholus, an ancient, degraded highland volcano located
at 19.78S, 172.98E that hosts a filled central, circular caldera (scale bar: 4 km; CTX image B18_016743_1597). (d)
Pyroclastic cones located in the Ulysses Fossae area north of Biblis Tholus. This image is centred at 5.88N, 122.88W.
From two cones a thick lava flow emanates. At others an extended surrounding lava field is observed (scale bar: 4 km;
CTX image P21_009198_1858). (e) Examples of different types of lava flow morphology, approximately 30 km NNE
of Olympus Mons (22.18N, 129.88W). Bottom right: a sinuous channel atop a lava tube (black arrow). Top left: lava
flows with either channel-levée or sheet-flow morphologies (scale bar: 1 km; CTX image P20_008684_2011). (f)
Concentric graben at the lower flanks of Pavonis Mons, whose summit region is marked by a large filled caldera and a
younger, partially filled caldera. Note the radially oriented wrinkle ridges on the summit (THEMIS IR daytime mosaic
centred at 1.38N, 248.68E; scale bar is 25 km). (g) A heavily fractured surface in Tharsis, located between Ceraunius
Fossae and Tractus Catena. In some graben segments, classic pit chains developed; low-lying fractures have been
flooded by Tharsis-sourced lava flows (upper left; HRSC image h9443_0000 centred at 26.08N, 254.28E; scale bar is
5 km). (h) Typical wrinkle ridges, here shown in Lunae Planum, with linear to concentric orientations. This image is
centred at 18.98N, 295.58E (THEMIS IR daytime mosaic). Scale bar is 10 km. North is up in all images unless otherwise
indicated by white arrow.
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volume of erupted and reworked volcanic material
is about 3.5 × 106 km3 (Platz et al. 2010). The erup-
tion frequency for the province has been recently
studied by dating lava flows and caldera segments
across Elysium (Platz & Michael 2011). Main vol-
canic activity occurred between 2.5 and 1 Ga but
decreased thereafter, however, with 12 less frequent
eruptions recorded in the past 500 myr (Platz &
Michael 2011).

To the south and SE of Elysium there is yet
another volcanically active region known as Ely-
sium Planitia or the Cerberus volcanic plains
(Fig. 8), which contains one of the youngest low-
shield volcanoes and lava flows known on Mars
(Plescia 2003; Werner et al. 2003; Baratoux et al.
2009; Vaucher et al. 2009). Because these lava
flows and low-shield volcanoes are mostly associ-
ated with or originate at the Cerberus Fossae frac-
ture system, which also extends into the Elysium
volcanic province, Platz & Michael (2011) argued
that both regions share the same magma source at
depth. Hence, Elysium Planitia is considered as
part of the broader Elysium volcanic province.

The Syrtis Major volcanic province is located
SW of the 1350 km-diameter Isidis impact basin,
near the Martian highland–lowland boundary. It
extends over 7.4 × 106 km2, and includes Syrtis
Major Planum and the two edifices of Nili and
Meroe Paterae (Fig. 8). The estimated thickness of
erupted volcanic material in the province ranges
from 0.5 to 1 km, with a total volume of about
1.6 ×105–3.2 ×105 km3 (Hiesinger & Head 2004).
The low-relief volcanoes each contain a north–
south-orientated caldera, whose formation ages are
given as 3.73–2.33 Ga and 3.77–0.23 Ga for Meroe
Patera caldera segments, and 3.55–1.61 Ga for Nili
Patera (Werner 2009; Robbins et al. 2011). Based
on geological mapping and observed areal densi-
ties for craters larger than 5 km in diameter, an
Early–Late Hesperian age (i.e. 3.71–3.37 Ga) for
Syrtis Major volcanism is suggested (Greeley &
Guest 1987; Hiesinger & Head 2001; Tanaka et al.
2005, 2014). However, a recent study of mapp-
ing and dating of individual lava flows and volca-
nic crater infill clearly points to volcanic activity
extending into the Early and Middle Amazonian
Epochs across the province (Platz et al. 2014).

The Circum-Hellas Volcanic Province (CHVP)
is located at the periphery of the large, approxi-
mately 2100 km-diameter Hellas impact basin
(Fig. 8). The province consists of the two well-
studied highland volcanoes Tyrrhenus and Hadria-
cus Montes, as well as the extensive volcanic plains
of Hesperia Planum to the NE, and Malea Planum
(including the putative volcanoes Amphitrites,
Peneus, Malea and Pityusa Paterae) to the SW of
Hellas (Greeley & Spudis 1981; Williams et al.
2007, 2008, 2009). The entire province covers more

than 2.1 × 106 km2 and formed after the Hellas
basin-forming event at about 4.0–3.8 Ga (Williams
et al. 2009). Major volcanic activity throughout
the CVHP appears to be restricted to the Noachian
and Hesperian, between 3.9 and 3.6 Ga (Williams
et al. 2009), although isolated activity at Hesperia
Planum did occur during the Early Amazonian
(Lehmann et al. 2012).

Apollinaris Mons and other ancient highland volca-
noes. Apollinaris Mons is a low-relief, stand-alone
volcanic edifice located near the highland–
lowland transitional zone SE of the Elysium volca-
nic province, at 9.28S, 174.88E (Fig. 8). The edifice
is about 180 km in diameter and rises up to 3.2 km.
Based on its relief, surface texture and degraded
friable materials, it is likely to be composed of pyr-
oclastic material (Robinson et al. 1993; Crumpler
et al. 2007). Apollinaris Mons appears to have
been active during the Noachian and Hesperian
periods (Werner 2009; Tanaka et al. 2014), which
may have included long-lived hydrothermal activity
(El Maarry et al. 2012).

Recently, some large, irregularly shaped depres-
sions in Arabia Terra were interpreted to represent
ancient volcanic constructs that together could
form the putative Arabia Terra volcanic province
(Michalski & Bleacher 2013). Of these possible
volcanoes, Eden Patera (Fig. 8) is the best candi-
date, a large depression 55 × 85 km in size, located
at 33.68N, 348.98E. Fine-grained, layered and often
sulphate-bearing material exposed throughout Ara-
bia Terra (Malin & Edgett 2000; Edgett & Malin
2002) may represent volcanic fall-out deposits
sourced from Eden Patera and nearby presumptive
volcanic constructs (Michalski & Bleacher 2013).

In the cratered highlands of Mars, further edi-
fices have been identified that potentially resemble
ancient Noachian, partially highly degraded or
deformed volcanoes (e.g. Dohm & Tanaka 1999;
Stewart & Head 2001; Ghatan & Head 2002; Xiao
et al. 2012). Xiao et al. (2012) mapped 75 such
edifices; most of them are located at the southern
periphery of Daedalia Planum and the Thauma-
sia highlands, in Terra Sirenum, Sisyphi Planum
(including Sisyphi Montes) and Terra Sabea (Fig.
8). However, the best-preserved potential volcanic
edifice is Zephyria Tholus (Fig. 9c), located at
19.88S, 172.98E (Stewart & Head 2001; Ghatan &
Head 2002) (Fig. 8).

Volcanic landforms

Volcano morphometry. Volcano morphology on
Mars differs substantially in terms of edifice diam-
eter, height and flank slopes relative to volcanoes
on Earth. Martian volcanoes consist primarily of
large and low-angle shield volcanoes, domes,
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pyroclastic cones (scoria/cinder cones and tuff
rings) and putative stratovolcanoes. Edifice forma-
tion and evolution essentially depends on whether
these volcanic constructs were formed during a
single eruptive phase (i.e. they are monogenetic) or
during repeated eruptions (i.e. polygenetic), and/
or on the longevity of volcanism at certain sites,
leading to the large shield volcanoes and strato-
volcanoes. The large volcanoes known as Montes,
Tholi and Paterae in the major volcanic provinces
developed over millions to billions of years, punc-
tuated with periods of quiescence of currently
unknown durations (e.g. Werner 2009; Williams
et al. 2010; Platz & Michael 2011).

Owing to the differing geological settings in
which major volcanoes formed (e.g. on slopes along
the highland–lowland transitional zone (Olympus,
Alba, Apollinaris Montes), in tectonically active
regions (Alba and Tharsis Montes), or near or on
large impact basin rims (Nili and Mereo Paterae
or Elysium and Hadriacus Montes, respectively),
these edifices are rarely symmetrical in shape and
structure. As a result, basal diameters and slopes
vary across individual edifices. The giants among
the Martian volcanoes, with respect to height and
basal diameter, are Olympus Mons (21.2 km in
height) and Alba Mons (c. 1100 km in diameter)
(Plescia 2004), respectively. Generally, the large
shield volcanoes in the Tharsis and Elysium volca-
nic provinces have flank slopes of about 18–68,
although a few Tholi exhibit flank slopes of up to
278 (Plescia 2004; Platz et al. 2011). Syrtis Major
and the circum-Hellas shield volcanoes are char-
acterized by flank slopes of less than 18 (Plescia
2004).

Small shield volcanoes are observed throughout
the Tharsis region and in the Elysium volcanic pro-
vince, and commonly occur in clusters or chains
(Figs 8 & 9b). Their basal diameters range from a
few kilometres to a few tens of kilometres, and
they frequently have summit elevations of up to
several hundred metres and flank slopes of less
than 58 (Baratoux et al. 2009; Bleacher et al.
2009; Hauber et al. 2009; Richardson et al. 2013).
These shield volcanoes are typical of plains-style
volcanism (Greeley 1982). It is likely that the for-
mation of low-shield volcanoes was common
throughout the evolution of the Tharsis volcanic
province, although most of the older edifices were
probably buried by successive, subsequent volcanic
activity (Hauber et al. 2011).

Pyroclastic cones (Fig. 9d), defined here as
scoria/cinder and tephra cones and tuff rings, have
only been observed on Mars since the availability
of high-resolution imagery in the following areas:
Pavonis Mons (Keszthelyi et al. 2008), Ascraeus
Mons (Mouginis-Mark & Christensen 2005), Syria
Planum (Hauber et al. 2009), Ulysses Fossae (Brož

& Hauber 2012), Utopia Planitia (Lanz et al. 2010),
Nili Patera (Skok et al. 2010) and the Nephentes–
Amenthes region (Skinner & Tanaka 2007; Brož
& Hauber 2013). Nevertheless, their possible exist-
ence in some locations had been reported earlier
(e.g. Carr et al. 1977; Frey & Jarosewich 1982;
Edgett 1990; Hodges & Moore 1994; Plescia 1994).
Morphometric analyses of Martian pyroclastic
cones are sparse. However, Brož & Hauber (2012)
studied 29 pyroclastic cones in the Ulysses Fossae
area in detail (see the cover picture of this Special
Publication); cone basal diameter, height and slope
can be up to 3.9 km, 650 m and 27.58, respectively.

Lava flows. Lava flows on Mars can be generally
classified as channel fed and tube fed (Fig. 9e).
Channel-fed lava flows are often narrow at proximal
reaches, forming levées on either side of the flow
with a confined inner channel. Further away, the
levée-channel morphology can transition into a
sheet flow, which is characterized by flat-topped,
rough or smooth textured surfaces, steep flow
margins and lobate escarpments. Sheet-flow width
at distal reaches is often several times larger than
the channelled lava flow near its source region.
Tube-fed lava flows form curvilinear ridges up to
several kilometres across. These long ridges
exhibit either single, partially recognizable chan-
nels at their crests, or aligned isolated or coalesced
pit-craters that formed after the encapsulated tubes
had been drained (i.e. syn- or post-eruptive col-
lapse). The tube morphology can transition into
multiple overlapping, narrow, channelled to sheet-
type flows that in turn form a lava field or fan at
the base of the tube. This type of tube-fed flow is
best observed on the western flanks of Olympus
Mons (Fig. 9e). Channel-fed sheet flows are prob-
ably best preserved on the relatively young,
Middle–Late Amazonian lava plains in the Tharsis
province (Fig. 9e). In each of the Martian volcanic
provinces, channel-fed and tube-fed lava flows
were formed, although their state of preservation
differs. Moreover, pre-existing surface textures,
channel confinement and slope, lava composition,
and effusion rate result in differences in lava-flow
morphology (e.g. ridged or platy texture, and chan-
nel sinuosity) and morphometry (e.g. width, height,
runout distance and volume).

Fallout deposits. Volcanic fallout or tephra deposits
generally consist of particles that have been trans-
ported ballistically from a source vent or settled
from an eruption column. In the latter case, particles
may have been transported over large distances
before settling down from the atmosphere, forming
air-fall deposits. Clast sizes within fallout depos-
its vary considerably. In proximal reaches, tephra
deposits can be poorly sorted, and are comprised
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of ash (,2 mm in width), lapilli (2–64 mm) and
blocks/bombs fragments (i.e. wall rock/juvenile
material; .64 mm). Further from the source, par-
ticles become increasingly better sorted, with
tephra deposits continuously thinning out down-
range of the volcanic plume and away from its apex.

On Mars, several fine-grained and friable depos-
its have been observed that probably have a volca-
nic origin. The largest deposits, collectively known
as the Medusae Fossae Formation (Scott & Tanaka
1982; Mandt et al. 2008), are located along the
highland–lowland transitional zone between 1408E
and 2308E (i.e. the longitudinal range) and to the
south of the Elysium rise through to Olympus
Mons. The source for these large (potentially tephra)
deposits has been attributed to either Apollinaris
Mons (Kerber et al. 2011b) or to the Tharsis vol-
canic province (Bradley et al. 2002; Hynek et al.
2003). Interestingly, ground observations by the
Mars Exploration Rover ‘Spirit’ in Gusev crater
confirmed the presence of layered coarse and fine-
grained tephra at ‘Home Plate’ (Squyres et al.
2007).

Volcaniclastic deposits. The collective term ‘volca-
niclastic deposit’ includes lahar, debris-flow and
debri-avalanche (landslide) deposits, dunes, and
rootless cones, which together resemble reworked
primary volcanic deposits such as lava flows, as
well as pyroclastic flow and tephra deposits. On
Mars, debris avalanche deposits caused by flank
edifice failure are observed in association with
Olympus Mons and Tharsis Tholus. Olympus Mons
is surrounded by aureole deposits known as Lycus,
Cyane, and Gigas Sulci and Sulci Gordii, which
represent large-scale landslide deposits that were
probably sourced from the circumferential scarp
(Lopes et al. 1982; McGovern et al. 2004; Byrne
et al. 2013a). Tharsis Tholus also experienced sev-
eral flank failure events, of which only remnants of
the western flank collapse are preserved as mounds
and rotated blocks (Platz et al. 2011). The best
examples of lahar (and debris-flow) deposits are
those associated with the sudden release of ground-
water at the western flank of the Elysium rise (Chris-
tiansen 1989). During the outburst(s) of water, a
substantial portion of the lower western Elysium
flank was eroded, transported and deposited onto
the plains of Utopia Planitia. Since the observed
channels and channel networks of Granicus Valles
and Hrad Vallis are confined by debris levées at
proximal to medial reaches, a ‘pure’ fluvial origin
with subsequent valley formation can be excluded.

Dark sediments and dunes are frequently ob-
served in the highlands of Mars. They occur mostly
within craters, calderas and intercrater plains. Their
aeolian origin was suggested in earlier studies (e.g.
Thomas 1984; Edgett & Blumberg 1994) and they

feature particle sizes ranging from medium to
coarse sand, which appear coarser than their ana-
logues on Earth (Edgett & Christensen 1991, 1994).
Remotely sensed spectroscopic studies revealed
that most of these dark dunes and sediments are
composed of olivine and pyroxene, which suggests
a volcanic origin (e.g. Poulet et al. 2007; Tirsch
et al. 2011). Dark basaltic material is either depos-
ited within craters by airfall or tephra layers are
exposed by impact craters from which intracrater
dunes formed (Tirsch et al. 2011). Probably the
best examples of active, dark basaltic dunes are
those exposed in the caldera Nili Patera (Silvestro
et al. 2010), which are composed of abraded lava
material and reworked tephra.

Rootless cones (or pseudocraters) form by explo-
sive interactions between lava and external water
(Thorarinsson 1953), either while lava is flowing
over water-saturated strata or when it physically
mingles with external water/ice. On Mars, there
are abundant locations of so-called rootless cones –
conical edifices with a summit depression – that
have also been attributed to periglacial proces-
ses (i.e. pingos: e.g. Burr et al. 2005; Page 2007)
and mud volcanism (Farrand et al. 2005). Recent
detailed surveys have shown that small cone groups
in Tartarus Colles (Hamilton et al. 2011), and in
Athabasca Valles and Cerberus Palus (Keszthelyi
et al. 2010), probably formed by rootless eruptions.

Composition of volcanic rocks

The morphology and morphometry of lava flows
(e.g. Greeley 1974; Greeley & Spudis 1981; Kes-
zthelyi et al. 2004), and their derived rheological
parameters (e.g. Zimbelman 1985; Baloga et al.
2003; Garry et al. 2007; Baratoux et al. 2009;
Hauber et al. 2011; Pasckert et al. 2012), together
with the similarities between terrestrial (e.g. islands
of Hawaii and Galapagos) and Martian shield vol-
canoes (e.g. Greeley & Spudis 1981; Hauber et al.
2009), suggest that volcanism on Mars is predomi-
nantly basaltic in nature. Geochemical analyses of
Mars-sourced SNC (Shergottite, Nakhlite Chas-
signite) meteorites (e.g. McSween 1994, 2002) and
in situ rover and lander investigations (e.g. Larsen
et al. 2000; McSween et al. 2004) have also con-
firmed the dominant presence of basaltic rocks on
Mars. Although andesitic rock compositions were
also suggested to be present at rover/lander sites
and across the northern plains (Bandfield et al.
2000; Larsen et al. 2000), Wyatt & McSween (2002)
reanalysed mineral abundances from published
work and attributed the ‘andesite’-like signature
to low-temperature, aqueous alteration of basalts.
Igneous minerals such as olivine, pyroxene and
feldspar, as well as volcanic glass present in the
Martian regolith, have been detected by spectral
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analyses from orbital spacecraft (e.g. Bandfield
et al. 2000; Christensen et al. 2003; Bibring et al.
2005). Rock compositional analyses at the Mars
Exploration Rover ‘Spirit’ and Mars Science Lab-
oratory ‘Curiosity’ landing sites provided evidence
for a bulk-chemical, mineralogical and textural
diversity of igneous samples (e.g. Squyres et al.
2006; Sautter et al. 2014).

Volcano-tectonics

Calderas. On all large shield and highland volca-
noes across the main volcanic provinces, summit
caldera(s) are observed, which attest to single or
multiple cycles of large-scale magma storage,
growth and replenishment within the edifices and
subsequent summit collapse(s). Crumpler et al.
(1996) studied Martian calderas and defined two
distinct caldera types: (1) Olympus type and (2)
Arsia type (Fig. 9a, f ), which are characterized by
complex/nested or by single summit calderas,
respectively. Caldera dimensions vary substantially
in diameter and depth. The largest caldera of the
biggest shield volcanoes is hosted by Arsia Mons
and measures 115 km in diameter, whereas, at high-
land volcanoes in the CHVP, calderas have formed
with diameters up to 145 km (Crumpler et al. 1996).
Caldera depths range from a few hundred metres
up to 5 km (for Pavonis Mons: Fig. 9f). It has been
noted that most of the ‘smaller’ volcanoes (Uraunius
MonsandTharsis,Ceraunius, Jovis,Biblis, andUlys-
ses Tholi) at the periphery of the Tharsis Montes
exhibit greater caldera depths (i.e. between 1 and
3 km) than the calderas of most of the large shield
volcanoes in Tharsis (Crumpler et al. 1996). Mar-
tian calderas show similar features to terrestrial
calderas, including one or more of the following
characteristics: steep, circular to elliptical caldera
walls, terraced caldera margins, circumferential
scarps, faults and graben, radially orientated ridges
and faults, pit crater chains, linear arrangement of
small vents, and volcanic flooding that has levelled
caldera floors (e.g. Crumpler et al. 1996; Mouginis-
Mark & Rowland 2001; Platz et al. 2011; Byrne
et al. 2012).

Flank deformation. Volcanoes can experience
tectonic deformation due to a number of exogenic
processes (e.g. rifting) but gravitationally driven
tectonism is one of the primary endogenic proces-
ses responsible for volcano flank deformation (Fig.
9f). Edifice spreading and sagging represent end
members of a structural continuum along which a
given volcano, subject to gravitational deforma-
tion, will lie; this continuum probably applies to
Mars as equally as it does to Earth (Byrne et al.
2013a). Volcano spreading is characterized by the
formation of a system of radial normal faults,

often forming ‘leaf graben’, on the flanks of the edi-
fice and a concentric thrust belt at its base (Borgia
et al. 2000). In contrast, volcano sagging will result
in the development of concentric flank thrusts or
‘terraces’ (Byrne et al. 2009, 2013a), accompanied
by the formation of a flexural moat and bulge (e.g.
Comer et al. 1985).

There is little direct evidence for volcano spread-
ing on Mars. This is because spreading requires
that an edifice be mechanically detached from
its underlying basement, such that the response to
loading is accommodated in the main by the vol-
cano itself (e.g. McGovern & Solomon 1993;
Borgia 1994), and the conditions necessary for
such decoupling (e.g. low-competency strata such
as clays) are not widely observed on Mars. Never-
theless, the Tharsis Tholus edifice, in eastern
Tharsis, does appear to have experienced sector col-
lapse in a manner similar to volcanoes known to
have spread on Earth (Platz et al. 2011). Spreading
along phyllosilicates proximal to and beneath
Olympus Mons has also probably played a role in
shaping that volcano (Morgan & McGovern 2005;
McGovern & Morgan 2009; Byrne et al. 2013a).

The effects of volcano sagging are seen much
more widely across Mars. At least nine volcanoes
(including Olympus Mons) show evidence of flank
terraces, topographically subtle landforms that
are difficult to see without the aid of topographical
data (Byrne et al. 2009). These structures were
observed on Olympus and on the Tharsis Montes
initially (e.g. Thomas et al. 1990) but their preva-
lence on shields of a range of shapes and sizes
indicates that their formation is likely to be tied to
a process commonly experienced by volcanoes.
Flank terraces were tied to lithospheric flexure by
McGovern & Solomon (1993), an interpretation
reinforced by more recent analogue modelling
studies (e.g. Byrne et al. 2013a). Importantly, vol-
cano sagging will serve to place an edifice into a
state of net compression, which will impede or
even inhibit magma ascent to its summit, and, in
turn, will alter its eruptive behaviour and develop-
ment (e.g. Byrne et al. 2012; McGovern et al. 2014).

Tectonic structures

It is widely accepted that Mars is a one-plate planet,
although the prospect of plate tectonics having at
some point operated on that planet has yet to be
fully resolved (Sleep 1994; Yin 2012). This possi-
bility was proposed because of the apparent hemi-
spheric crustal dichotomy dividing Mars into the
southern high-standing, cratered highlands and the
northern lowlands, with the latter appearing, with
Viking-based imagery, to be less cratered than the
southern highlands. With new, high-resolution topo-
graphical data, however, large subdued basin
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structures were discovered, which most probably
makes the lowlands as old as the highlands (Frey
2008). There are currently two theories for how
the dichotomy on Mars developed: (1) by a giant
impact (e.g. Wilhelms & Squyres 1984; Andrews-
Hanna et al. 2008; Marinova et al. 2008); or (2)
by endogenic processes (convective overturn of
the interior (Wise et al. 1979) or by degree-1 con-
vection with north–south asymmetry (Zhong &
Zuber 2001; Roberts & Zhong 2006)).

In the Martian lithosphere, a suite of faults has
been identified with normal (e.g. Plescia & Saunders
1982; Schultz et al. 2007), reverse (e.g. Schultz &
Tanaka 1994) and strike-slip senses of movement
(Andrews-Hanna et al. 2008; Yin 2012) (Fig. 8).
Extensional features include normal faults, half-
graben, graben and rift-like structures such as Ach-
eron Fossae (Kronberg et al. 2007) (Figs 8 & 9g).
As for other terrestrial worlds, most graben likely
represent an hourglass-shaped subsurface pattern
(Schultz et al. 2007). And as for Mercury and the
Moon, wrinkle ridges (Figs 7f & 9h) are very com-
mon landforms on the Martian surface once more
interpreted as arcuate, asymmetric ridges that have
formed above an underlying, low-angle thrust fault.
This type of faulting is thought to occur in layered
rocks such as sedimentary sequences or successions
of lava flows. Well-developed wrinkle-ridge sys-
tems are probably best preserved in Lunae, Solis
and Syrtis Major Plana (Fig. 9h).

The global tectonic map of Mars (Knapmeyer
et al. 2006) shows that the focus of activity is asso-
ciated with the large Tharsis volcanic province.
Here, large sets of normal faults, half-graben and
graben radiate outwards (with minor occurrences
of concentric faults) from the central Tharsis rise
(Fig. 8). Plescia & Saunders (1982) studied in
detail the tectonic evolution of Tharsis, and pro-
posed four discrete centres of faulting that, from
oldest to youngest, include the Thaumasia high-
lands, northern Syria Planum and two centres near
Pavonis Mons.

The timing of the main tectonic activity on
Mars was later determined by Anderson et al.
(2001) to have peaked in five main phases. The
oldest identified stage of activity occurred during
the Noachian, when most of the graben in Syria
Planum, Tempe Terra and Thaumasia formed. The
Late Noachian–Early Hesperian (stage 2) and
Early Hesperian (stage 3) tectonic phases formed
extensional structures along the central Valles Mar-
ineris, and in Pavonis, Syria, Ulysses and Tempe
Terra, respectively. Stage 3 tectonic activity is
also associated with wrinkle-ridge formation in
Lunae and Solis Plana, as well as in Thaumasia,
Sirenum, Memnonia and Amazonis Planitia (Ander-
son et al. 2001). The tectonic structures formed
in stage 4 (Late Hesperian–Early Amazonian)

developed around Alba Mons and the Tharsis
Montes, whereas the latest activity (stage 5)
occurred during the Middle–Late Amazonian with
associated faults located around the large shield vol-
canoes (Anderson et al. 2001).

The main cause of extensional deformation
within Tharsis and its periphery is its loading-
induced stress on the lithosphere. It is thought that
most graben are the surface expressions of giant
dyke swarm intrusions (Ernst et al. 2001; Wilson
& Head 2002; Schultz et al. 2004). Similar con-
centric and radial fault patterns (e.g. Cerberus
Fossae), although far less numerous, are also
observed in the Elysium volcanic province, where
the mass and volume of the Elysium rise has also
induced faulting.

Valles Marineris constitutes the largest, most
spectacular and, perhaps, the most puzzling set of
canyons in the solar system (Lucchitta et al. 1992).
Although the linearity of canyon walls suggests a
tectonic origin, differing driving mechanisms have
been proposed for the canyons, including tec-
tonic rifting associated with large-scale magmatism
and/or extensive dyke emplacement (e.g. Blasius
et al. 1977; Mège & Masson 1996; McKenzie &
Nimmo 1999; Schultz & Lin 2001; Dohm et al.
2009), collapse along tectonic zones and subsequent
catastrophic discharges (Sharp 1973; Tanaka &
Golombek 1989; Spencer & Fanale 1990; Rodriguez
et al. 2006), salt tectonics (Montgomery & Gillespie
2005; Adams et al. 2009), composite origins invol-
ving erosion (Lucchitta et al. 1994) and/or major
distinct stages of collapse and normal faulting
(Schultz 1998), and volcano-erosion where Tharsis-
sourced lava tubes form pit chains due to roof col-
lapse, which later evolve into fossae and chasmata
(Leone 2014). A recent study by Andrews-Hanna
(2012) showed that canyon formation occurred
through displacement along steeply dipping faults,
coupled with vertical subsidence.

Article summaries

P. Mancinelli, F. Minelli, A. Mondini, C. Pauselli &
C. Federico

A downscaling approach for geological

characterization of the Raditladi basin of

Mercury

Through combining newly available photogeo-
logical, compositional and topographical data for
Mercury, Mancinelli et al. (2014) first present a
new synthesis of the surface units on the inner-
most planet. These authors then investigate an area
of particularly diverse units in greater detail, an
area that includes the 260 km-diameter Raditladi
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impact basin. In investigating the geological his-
tory of the basin, they construct a geological cross-
section that shows how the volcanic units inside the
interior of Raditladi were emplaced upon impact-
related units. The chapter ends with a call for further
regional- and local-scale mapping of Mercury, to
elucidate the origin of units observed globally but
whose nature is currently unclear.

N. P. Lang & I. López

The magmatic evolution of three Venusian

coronae

Lang & López (2013) argue that the volcanic pro-
ducts and forms associated with three case-study
coronae, Zemire, Bhumidevi and Aramiti, may not
be consistent with widely accepted models of
corona formation. Instead, their evolution can be
explained by the mass evacuation of a stratified,
shallow magma chamber. This evacuation and col-
lapse would account for the observed extensive
lava flows emanating from the annular fractures sur-
rounding these coronae, as well as the steep-sided
domes and tholi that formed along these fractures
at the latest stage of the corona evolution, when
crystal-rich magmas (or basaltic foams) were
squeezed up and forced to the surface.

R. C. Ghail & L. Wilson

A pyroclastic flow deposit on Venus

Ghail & Wilson (2013) describe the morphological
characteristics of a semi-circular, doughnut-shaped
deposit on Venus that is morphologically consis-
tent with pyroclastic flow deposits on Earth. The
hydrodynamic interaction of this deposit, named
Scathach Fluctus, with a volcanic cone indicate
flow velocities of up to 48 m s21. Estimated volatile
abundances associated with the explosive eruption
imply high CO2 and SO2 concentrations in the man-
tle. Because the radar characteristics of Scathach
Fluctus are similar to many parts of the Venusian
surface, these authors suggest that pyroclastic flow
deposits are more widespread on the second planet
than previously thought.

C. M. Meyzen, M. Massironi, R. Pozzobon & L. Dal
Zilio

Are terrestrial plumes from motionless plates

analogues to Martian plumes feeding the giant

shield volcanoes?

Hawaiian intraplate volcanism has long been
thought an apt analogue to the giant, long-lived

volcanoes on Mars. However, Meyzen et al.
(2014) argue for a revision of that view: that,
instead, volcanoes on the slow-moving Nubian
and Antarctic plates provide a better comparison.
By comparing and contrasting the properties of vol-
canoes located on slow-moving plates on Earth with
the large volcanoes in Mars’ Tharsis region, these
authors seek to understand more fully the nature
and significance of the large-scale melting and
differentiation processes of volcanoes on Mars.

T. Morota, Y. Ishihara, S Sasaki, S. Goossens,
K. Matsumoto, H. Noda, H. Araki, H. Hanada, S.
Tazawa, F. Kikuchi, T. Ishikawa, S. Tsuruta, S.
Kamata, H. Otake, J. Haruyama & M. Ohtake

Lunar mare volcanism: lateral heterogeneities

in volcanic activity and relationship with

crustal structure

The asymmetry of lunar near- and farside maria is
still under investigation. Here, Morota et al.
(2014) study the relationship between mare distri-
bution and crustal thickness on the Moon using
remotely sensed geological and geophysical data.
Their results show that magma extrusion is domi-
nant in regions of relatively thin crust, which is
consistent with previous studies. However, these
authors also find lateral heterogeneities in the
upper limits of crustal thickness, which would
allow magma ascent to, and lava extrusion onto,
the lunar surface. These heterogeneities may be
due to lateral variations in melt/magma genera-
tion within the mantle and/or changes in crustal
density.

C. Carli, G. Serventi & M. Sgavetti

VNIR spectral characteristics of terrestrial

igneous effusive rocks: mineralogical

composition and the influence of texture

Carli et al. (2014) discuss the utility of visible and
near-infrared (VNIR) spectroscopy to map min-
eralogical variations across planetary surfaces. In
particular, igneous rocks emplaced effusively
have distinct crystal field absorption bands in the
VNIR spectral range, bands that correspond to the
rocks’ constituent mineralogy. These authors review
how petrological properties influence the inter-
pretation of rock mineralogy using spectroscopy.
Among other results, they show how grain and crys-
tal size can influence the spectra of effusive rocks,
and how glassy components in rock groundmass
reduce or hide absorption bands of mafic minerals
or feldspars. They also suggest that combining
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geomorphic and spectral data is the most reliable
method of mapping of volcanic material on plane-
tary surfaces.

S. Ferrari, M. Massironi, S. Marchi, P. K. Byrne,
C. Klimczak, E. Martellato & G. Cremonese

Age relationships of the Rembrandt basin

and Enterprise Rupes, Mercury

The time–stratigraphic relationship between the
715 km-diameter Rembrandt impact basin and the
Enterprise Rupes scarp system, which extends for
over 800 km across the surface of Mercury, is the
focus of the work by Ferrari et al. (2014). These
authors find that the Rembrandt basin formed at
about 3.8 Ga, with resurfacing of its interior by vol-
canic smooth plains occurring within 100–300 myr
after basin formation. The most recent activity
along Enterprise Rupes took place at about 3.6 Ga,
cross-cutting (and therefore post-dating) the
basin’s volcanic infilling event(s). It is currently
unclear whether the initiation of the Enterprise
Rupes fault system pre- or post-dates the Rembrandt
basin-forming event.

F. C. Lopes, A. T. Caselli, A. Machado &
M. T. Barata

The development of the Deception Island

volcano caldera under control of the

Bransfield Basin sinistral strike-slip tectonic

regime (NW Antarctica)

Deception Island is a small, volcanically active
caldera volcano located in the Bransfield Strait, off
the Antarctic Peninsula. Lopes et al. (2014) present
evidence that the fractures that have shaped the
edifice, and its elongate caldera, are the result of per-
vasive left-lateral simple shearing within the Brans-
field Basin. They also review the formational history
of the caldera, proposing that at least two phases of
collapse have occurred: first in a small-volume
event and, later, in a larger event that affected the
flanks of the volcano itself.

P. K. Byrne, E. P. Holohan, M. Kervyn, B. van Wyk
de Vries & V. R. Troll

Analogue modelling of volcano flank terrace

formation on Mars

Flank terraces are laterally extensive, topographi-
cally subtle landforms on the slopes of large Mar-
tian shield volcanoes. In this chapter, Byrne et al.
(2014a) use a series of scaled analogue models to

test the hypothesis that flank terraces result from
constriction of a volcano as it down-flexes its under-
lying lithospheric basement. They show that terrace
formation on sagging edifices is largely independent
of volcano slope, size or aspect ratio, but increas-
ing lithospheric thickness will ultimately inhibit ter-
race development entirely. These authors conclude
that understanding the structural evolution of large
shields on Mars requires that these volcanoes be
appraised within the context of lithospheric flexure.

R. Pozzobon, F. Mazzarini, M. Massironi &
L. Marinangeli

Self-similar clustering distribution of

structural features on Ascraeus Mons

(Mars): implications for magma

chamber depth

Pozzobon et al. (2014) use self-similar fractal clus-
tering techniques to examine the distribution of pit
craters on the Ascraeus Mons volcano on Mars.
These pits are probably related to feeder dykes
and, by understanding how the pits are distributed,
the subsurface architecture of the magma system
below Ascraeus can be understood. The authors find
evidence for two discrete pit populations, indicative
of two magma sources – one at shallow depths and
the other deep below the volcano – and appraise this
finding within the context of earlier studies of the
volcano, suggesting that this analysis may provide
insight into the deep structure of other large volca-
noes on Mars.

P. J. McGovern, E. B. Grosfils, G. A. Galgana,
J. K. Morgan, M. E. Rumpf, J. R. Smith &
J. R. Zimbelman

Lithospheric flexure and volcano basal

boundary conditions: keys to the structural

evolution of large volcanic edifices on the

terrestrial planets

McGovern et al. (2014) study the interplay between
large volcanic edifices and the underlying litho-
sphere, which flexes in response to the exerted vol-
canic load. Lithospheric thickness influences the
shape of the flexural response, and the associated
stress states in turn can influence the structure and
evolution of the overlying edifice – which in turn
affects lithosphere response. The edifice–basement
basal boundary condition (i.e. welded base or glid-
ing basal plane) determines whether compression
is transferred into the edifice, which can potentially
inhibit magma ascent into the edifice. Volcanoes
situated on a thick lithosphere and a clay-based
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décollement can grow to enormous sizes, whereas
the growth of an edifice welded to a thin lithosphere
is likely to be limited.

E. B. Grosfils, P. J. McGovern, P. M. Gregg, G. A.
Galgana, D. M. Hurwitz, S. M. Long & S. R.
Chestler

Elastic models of magma reservoir mechanics:

a key tool for investigating planetary

volcanism

Exploring the mechanics of magma storage, its
ascent to the surface, and the interplay of subsurface
and surface volcano-tectonic processes is the main
objective of this contribution by Grosfils et al.
(2013). These authors use bespoke elastic numerical
models that leverage field, laboratory and remote-
sensing observations to study volcanic processes on
terrestrial worlds. Their models provide renewed
insights into how subsurface magma reservoirs
inflate and rupture, and how these processes relate
to volcano growth, caldera formation, and the asso-
ciated emplacement of circumferential and radial
dykes.

M. Massironi, G. Di Achille, D. A. Rothery,
V. Galluzzi, L. Giacomini, S. Ferrari, M. Zusi,
G. Cremonese & P. Palumbo

Lateral ramps and strike-slip kinematics on

Mercury

Massironi et al. (2014) investigate contractional
features on Mercury for evidence of strike-slip
deformation. Such evidence includes en echelon
fold arrays, restraining bends, positive flower struc-
tures, stike-slip duplexes and crater rims that have
been displaced by lobate scarps and high-relief
ridges. These authors find that the strike-slip to
transpressional motion along faults they observe
is inconsistent with a globally homogenous stress
field predicted to result from secular cooling-
induced global contraction alone. They conclude
that other processes, such as mantle convection,
may have played a contributory role during the tec-
tonic evolution of Mercury.

L. Giacomini, M. Massironi, S. Marchi, C. I. Fassett,
G. Di Achille & G. Cremonese

Age dating of an extensive thrust system

on Mercury: implications for the planet’s

thermal evolution

Mercury’s surface is characterized by abundant
contractional features such as lobate scarps and

wrinkle ridges, which are principally attributed to
the planet’s secular cooling and resultant global
contraction. Giacomini et al. (2014) study the for-
mation age of an extensive fold and thrust belt of
which Blossom Rupes is part, using different age
determination techniques, including buffered crater
counting. They find that thrust activity along this
system terminated between 3.7 and 3.5 Ga. Should
these techniques indicate that other large-scale con-
tractional features on Mercury have similar ages, a
revision of current thermal evolution models for
Mercury, including an earlier onset of planetary
contraction, is required.

V. Galluzzi, G. Di Achille, L. Ferranti, C. Popa &
P. Palumbo

Faulted craters as indicators for thrust

motions on Mercury

Is it possible to directly determine true dip angles
and slip vectors for faults on other planets? Galluzzi
et al. (2014) show that this can be accomplished by
using digital terrain models of deformed craters on
Mercury. In so doing, these authors demonstrate
the broad range of dip angles and kinematics of Mer-
curian faults. This methodology, which allows for
the quantitative structural characterization of remo-
tely sensed faults, can be used to enhance our under-
standing of planetary geodynamics.

L. B. Harris & J. H. Bédard

Interactions between continent-like ‘drift’,

rifting and mantle flow on Venus: gravity

interpretations and Earth analogues

Harris & Bédard (2014b) identify major strike-
slip shear zones at Ishtar and Afrodite Terrae and
at Sedna Planitia, using offsets of Bouger gravity
anomalies and gravity gradient edges. Their obser-
vations call for a new conceptual model capable of
satisfying Venusian subduction-free geodynamics,
dominant convective upwellings and the substantial
horizontal tectonism required by the observed
strike-slip belts. These authors suggest that mantle
traction, generated and controlled by linear upwel-
lings along rifts, has resulted in the substantial
lateral motion of areas of continent-like crust on
Venus, such as Lakshumi planum (in western Ishtar
Terra). This process accounts for the fold-and-
thrust belt that bounds Lakshumi planum to the
north, as well as the transpressive regimes recog-
nized at its eastern and western margins. Harris &
Bédard (2014b) conclude by proposing that this
new perspective of Venus may provide insight into
the tectonics of the Archaean Earth.
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M. T. Barata, F. C. Lopes, P. Pina, E. I. Alves &
J. Saraiva

Automatic detection of wrinkle ridges in

Venusian Magellan imagery

Wrinkle ridges are common and widespread
tectonic features on Venus. Barata et al. (2014)
present an automated algorithm to detect wrinkle
ridges using Magellan Synthetic Aperture Radar
imagery, with which they characterize ridge mor-
phology, including orientation, length and spac-
ing. This procedure greatly enhances wrinkle ridge
mapping and analysis. In addition, these authors
also test an automated procedure to identify and
characterize impact craters and their ejecta.

A. L. Nahm & R. A. Schultz

Rupes Recta and the geological history of

the Mare Nubium region of the Moon: insights

from forward mechanical modelling of the

‘Straight Wall’

The Moon’s famous Rupes Recta, or ‘Straight
Wall’, situated in Mare Nubium on the lunar near-
side has been known for more than three centu-
ries. Nahm & Schultz (2013) investigate its fault
characteristics. Detailed structural mapping and
throw distribution measurements show that this
structure has experienced bi-directional growth.
Forward mechanical modelling of its topography
indicates that the fault has a dip angle of 858,
almost 0.5 km of maximum displacement and pene-
trates over 40 km into the lunar lithosphere. These
authors show that the development of Rupes Recta
could have been strongly influenced by columnar
cooling joints activated as shear planes during sub-
sidence of Mare Nubium.

D. Y. Wyrick, A. P. Morris, M. K. Todt &
M. J. Watson-Morris

Physical analogue modelling of Martian

dyke-induced deformation

Dykes are commonly thought to form, and thus
underlie, laterally extensive graben on planetary
surfaces. Using analogue modelling techniques,
Wyrick et al. (2014) demonstrate that dykes in-
jected into an undisturbed crust cause ridges and
related contractional features to develop at the
surface, instead of extensional structures. This find-
ing has important implications for graben sets on
numerous worlds, including our understanding of
Tharsis-radial graben, which should predate dyke
emplacement, the evolution of Venusian radiating

fissure systems and, supposedly, dyke-induced gra-
ben on the Moon.

L. Guallini, C. Pauselli, F. Brozzetti & L.
Marinangeli

Physical modelling of large-scale

deformational systems in the South Polar

Layered Deposits (Promethei Lingula, Mars):

new geological constraints and climatic

implications

In a follow-on study of the Promethei Lingula ice
sheet on Mars, Guallini et al. (2014) integrate struc-
tural analysis with thermal and mechanical models
to quantify the deformation of part of the ice
sheet’s South Polar Layered Deposits. They show
that parts of these deposits feature soft-sediment
deformation and that internal compositions are
dominated by CO2 ice. Moreover, these authors
determine that deformation of the layered deposits
is unlikely to have occurred under present-day cli-
matic conditions. Instead, warmer temperatures in
the past were likely to have been responsible for
soft-sediment deformation, and may even have trig-
gered gravitational sliding of the entire ice sheet.

D. L. Buczkowski & D. Y. Wyrick

Tectonism and magmatism identified on

asteroids

This contribution provides a review of linear fea-
tures observed on a range of asteroids, including
Gaspra, Eros and Itokawa. Buczkowski & Wyrick
(2014) primarily focus on previous observations
of tectonic structures, current models to explain lin-
ear feature formation and the implications for the
internal structure of these small bodies. Even though
Vesta is a unique and differentiated proto-planetary
body, it hosts fractures and grooves that are morpho-
logically similar to those observed on smaller aster-
oids, and is therefore also included in this review
chapter. To date, no volcanic features have been
identified on Vesta’s surface, but these authors
discuss the prospect that the geological history of
Vesta may have included endogenic magmatism.

This volume would not have been possible without the
assistance of all who willingly agreed to review these
chapters. Thanks also go to the reviewer, D. A. Williams,
of this chapter. The authors also wish to thank T. M. Hare
(USGS Astrogeology Science Center, Flagstaff, AZ) for
compiling global datasets in GIS-ready formats for Venus,
the Moon and Mars. M. A. Ivanov (Russian Academy of
Science, Moscow) kindly provided his geological map of
Venus and assisted in simplifying the map units. P. K.
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Martı́n-Herrero, À., Rodrı́gue, A. & Pimentel,
C. 2010. Structural evolution of Lavinia Planitia,
Venus: implications for the tectonics of the lowland
plains. Icarus, 206, 210–228.

Ferrari, S., Massironi, M., Marchi, S., Byrne, P. K.,
Klimczak, C., Martellato, E. & Cremonese, G.
2014. Age relationships of the Rembrandt basin and
Enterprise Rupes, Mercury. In: Platz, T., Massironi,
M., Byrne, P. K. & Hiesinger, H. (eds) Volcanism
and Tectonism Across the Inner Solar System. Geologi-
cal Society, London, Special Publications, 401. First
published online July 29, 2014, http://dx.doi.org/10.
1144/SP401.20

Fischer, K. M., Ford, H. A., Abt, D. L. & Rychert, C. A.
2010. The lithosphere–asthenosphere boundary. Annual
Reviews of Earth and Planetary Sciences, 38, 551–575.

Frankel, C. 2005. Worlds on Fire: Volcanoes on the
Earth, the Moon, Mars, Venus and Io. Cambridge Uni-
versity Press, Cambridge.

Freed, A. M., Melosh, H. J. & Solomon, S. C. 2001. Tec-
tonics of mascon loading: resolution of the strike-slip
faulting paradox. Journal of Geophysical Research,
106, 20 603–20 620.

Freed, A. M., Solomon, S. C., Watters, T. R., Phillips,
R. J. & Zuber, M. T. 2009. Could Pantheon Fossae be
the result of the Apollodorus crater-forming impact
within the Caloris basin, Mercury? Earth and Plane-
tary Science Letters, 285, 320–327.

T. PLATZ ET AL.42

Downloaded from https://www.lyellcollection.org by Guest on Nov 10, 2025

http://dx.doi.org/10.1016/j.gsf.2014.02.001
http://dx.doi.org/10.1016/j.gsf.2014.02.001
http://dx.doi.org/10.1016/j.gsf.2014.02.001
http://dx.doi.org/10.1016/0012&ndash;821X(74)90003-X
http://dx.doi.org/10.1016/0012&ndash;821X(74)90003-X
http://dx.doi.org/10.1016/0012&ndash;821X(74)90003-X
http://dx.doi.org/10.1016/0012&ndash;821X(74)90003-X
http://dx.doi.org/10.1016/0012&ndash;821X(74)90003-X
http://dx.doi.org/10.1126/science.183.4130.1214
http://dx.doi.org/10.1126/science.183.4130.1214
http://dx.doi.org/10.1126/science.183.4130.1214
http://dx.doi.org/10.1006/icar.1994.1197
http://dx.doi.org/10.1006/icar.1994.1197
http://dx.doi.org/10.1006/icar.1994.1197
http://dx.doi.org/10.1029/2002gl016515
http://dx.doi.org/10.1029/2002gl016515
http://dx.doi.org/10.1016/j.icarus.2011.10.022
http://dx.doi.org/10.1016/j.icarus.2011.10.022
http://dx.doi.org/10.1016/j.icarus.2011.10.022
http://dx.doi.org/10.1029/2004JE002297
http://dx.doi.org/10.1029/2004JE002297
http://dx.doi.org/10.1029/2004JE002297
http://dx.doi.org/10.1029/2011GL047294
http://dx.doi.org/10.1029/2011GL047294
http://dx.doi.org/10.1029/2011GL047294
http://dx.doi.org/10.1144/SP401.20
http://dx.doi.org/10.1144/SP401.20
http://dx.doi.org/10.1144/SP401.20


Freed, A. M., Blair, D. M. et al. 2012. On the origin of
graben and ridges within and near volcanically buried
craters and basins in Mercury’s northern plains.
Journal of Geophysical Research, 117, E00L06,
http://dx.doi.org/10.1029/2012JE004119

Frey, H. 2008. Ages of very large impact basins on Mars:
implications for the late heavy bombardment in the
inner solar system. Geophysical Research Letters, 35,
L13203.

Frey, H. & Jarosewich, M. 1982. Subkilometer mar-
tian volcanoes–Properties and possible terres-
trial analogs. Journal of Geophysical Research, 87,
9867–9879.

Frey, H., Edgar, L. & Lillis, R. 2007. Very large visible
and buried impact basins on Mars: implications for
internal and crustal evolution and the late heavy bom-
bardment in the inner solar system. Abstract 3070 pre-
sented at the 7th International Conference on Mars,
July 9–13, 2007, California Institute of Technology
(Caltech).

Gaddis, L. R., Pieters, C. M. & Hawke, B. R. 1985.
Remote sensing of lunar pyroclastic mantling deposits.
Icarus, 61, 461–489.

Gaddis, L., Rosanova, C., Hare, T., Hawke, B. R.,
Coombs, C. & Robinson, M. S. 1998. Small lunar pyr-
oclastic deposits: a new global perspective. Abstract
1807–1808 presented at the 29th Lunar & Planetary
Science Conference, March 16–20, 1998, The Wood-
lands, Texas.

Galgana, G. A., Grosfils, E. B. & McGovern, P. J.
2013. Radial dike formation on Venus: insights from
models of uplift, flexure and magmatism. Icarus,
225, 538–547.

Galluzzi, V., Di Achille, G., Ferranti, L., Popa, C. &
Palumbo, P. 2014. Faulted craters as indicators for
thrust motions on Mercury. In: Platz, T., Massironi,
M., Byrne, P. K. & Hiesinger, H. (eds) Volcanism
and Tectonism Across the Inner Solar System. Geologi-
cal Society, London, Special Publications, 401. First
published online June 12, 2014, http://dx.doi.org/10.
1144/SP401.17

Garry, W. B., Zimbelman, J. R. & Gregg, T. K. P. 2007.
Morphology and emplacement of a long channeled
lava flow near Ascraeus Mons volcano, Mars.
Journal of Geophysical Research, 112, E08007.

Gerya, T. V. 2014. Plume-induced crustal convection: 3D
thermomechanical model and implications for the
origin of novae and coronae on Venus. Earth and Pla-
netary Science Letters, 391, 183–192.

Ghail, R. C. & Wilson, L. 2013. A pyroclastic flow
deposit on Venus. In: Platz, T., Massironi, M.,
Byrne, P. K. & Hiesinger, H. (eds) Volcanism and
Tectonism Across the Inner Solar System. Geological
Society, London, Special Publications, 401. First pub-
lished online November 19, 2013, http://dx.doi.org/
10.1144/SP401.1

Ghatan, G. J. & Head, J. W., III. 2002. Candidate
subglacial volcanoes in the south polar region of
Mars: morphology, morphometry, and eruption con-
ditions. Journal of Geophysical Research, 107, 5048,
http://dx.doi.org/10.1029/2001JE001519

Ghent, R. & Hansen, V. 1999. Structural and kinematic
analysis of eastern Ovda Regio, Venus: implications
for crustal plateau formation. Icarus, 139, 116–136.

Giacomini, L., Massironi, M., Marchi, S., Fassett,
C. I., Di Achille, G. & Cremonese, G. 2014. Age
dating of an extensive thrust system on Mercury:
implications for the planet’s thermal evolution.
In: Platz, T., Massironi, M., Byrne, P. K. & Hie-

singer, H. (eds) Volcanism and Tectonism Across the
Inner Solar System. Geological Society, London, Spe-
cial Publications, 401. First published online August
13, 2014, http://dx.doi.org/10.1144/SP401.21

Giguere, T. A., Taylor, G. J., Hawke, B. R. & Lucey, P. G.
2000. The titanium contents of lunar mare basalts.
Meteoritics and Planetary Science, 35, 193–200,
http://dx.doi.org/10.1111/j.1945-5100.2000.tb01985.x

Giguere, T. A., Hawke, B. R. et al. 2003. Remote
sensing studies of the Lomonosov-Fleming region of
the Moon. Journal of Geophysical Research, 108,
5118, http://dx.doi.org/10.1029/2003JE002069

Gillis-Davis, J. J., Blewett, D. T. et al. 2009. Pit-floor
craters on Mercury: evidence of near-surface igneous
activity. Earth and Planetary Science Letters, 285,
243–250.

Gilmore, M. S. & Head, J. W. 2000. Sequential defor-
mation of plains at the margin of Alpha Regio,
Venus: implications for tessera formation. Meteoritics
and Planetary Science, 35, 667–687.

Gilmore, M. S., Collins, G. C., Ivanov, M. A., Marinan-

geli, L. & Head, J. W. 1998. Style and sequence
of extensional structures in tessera terrain, Venus.
Journal of Geophysical Research, 103, 16 813–16 840.

Glaze, L. S., Stofan, E. R., Smrekar, S. E. & Baloga,
S. M. 2002. Insights into corona formation through
statistical analyses. Journal of Geophysical Research,
107, 5135.

Glotch, T. D., Hagerty, J. J. et al. 2011. The Mairan
domes: silicic volcanic constructs on the Moon. Geo-
physical Research Letters, 38, L21204, http://dx.doi.
org/10.1029/2011GL049548

Golombek, M. 1999. Introduction to the special section:
mars Pathfinder. Journal of Geophysical Research,
104, 8521–8522, http://dx.doi.org/10.1029/1998JE
900032

Golombek, M. P., Plescia, J. B. & Franklin, B. J. 1991.
Faulting and folding in the formation of planetary
wrinkle ridges. Proceedings of Lunar and Planetary
Science, 21, 679–693.

Golombek, M. P., Anderson, F. S. & Zuber, M. T. 2000.
Martian wrinkle ridge topography: evidence for sub-
surface faults from MOLA. Abstract 1294 presented
at the 31st Lunar & Planetary Science Conference,
March 13–17, 2000, The Woodlands, Texas.

Golombek, M. P., Anderson, F. S. & Zuber, M. T. 2001.
Martian wrinkle ridge topography: evidence for sub-
surface faults from MOLA. Journal of Geophysical
Research, 106, 23 811–23 822.

Greeley, R. 1971. Lava tubes and channels in the lunar
Marius Hills. The Moon, 3, 289–314.

Greeley, R. (ed.) 1974. Geologic Guide to the Island of
Hawaii: A Field Guide for Comparative Planetary
Geology. NASA CR-152416. NASA, Washington, DC.

Greeley, R. 1982. The Snake River Plains, Idaho: repre-
sentative of a new category of volcanism. Journal of
Geophysical Research, 87, 2705–2712.

Greeley, R. & Guest, J. E. 1987. Geologic Map of
the Eastern Equatorial Region of Mars, Scale

VOLCANISM AND TECTONISM ACROSS THE INNER SOLAR SYSTEM: AN OVERVIEW 43

Downloaded from https://www.lyellcollection.org by Guest on Nov 10, 2025

http://dx.doi.org/10.1029/2012JE004119
http://dx.doi.org/10.1029/2012JE004119
http://dx.doi.org/10.1144/SP401.17
http://dx.doi.org/10.1144/SP401.17
http://dx.doi.org/10.1144/SP401.17
http://dx.doi.org/10.1144/SP401.1
http://dx.doi.org/10.1144/SP401.1
http://dx.doi.org/10.1144/SP401.1
http://dx.doi.org/10.1029/2001JE001519
http://dx.doi.org/10.1029/2001JE001519
http://dx.doi.org/10.1144/SP401.21
http://dx.doi.org/10.1144/SP401.21
http://dx.doi.org/10.1111/j.1945-5100.2000.tb01985.x
http://dx.doi.org/10.1111/j.1945-5100.2000.tb01985.x
http://dx.doi.org/10.1111/j.1945-5100.2000.tb01985.x
http://dx.doi.org/10.1029/2003JE002069
http://dx.doi.org/10.1029/2003JE002069
http://dx.doi.org/10.1029/2011GL049548
http://dx.doi.org/10.1029/2011GL049548
http://dx.doi.org/10.1029/2011GL049548
http://dx.doi.org/10.1029/1998JE900032
http://dx.doi.org/10.1029/1998JE900032
http://dx.doi.org/10.1029/1998JE900032


1:15,000,000. United States Geological Survey,
Miscellaneous Geologic Investigations Series Map,
I-1802-B.

Greeley, R. & Schneid, B. D. 1991. Magma generation
on Mars – amounts, rates, and comparisons with
Earth, Moon, and Venus. Science, 254, 996–998.

Greeley, R. & Spudis, P. D. 1981. Volcanism on Mars.
Reviews of Geophysics and Space Physics, 19, 13–41.

Greeley, R., Kadel, S. D. et al. 1993. Galileo imaging
observations of lunar maria and related deposits.
Journal of Geophysical Research, 98, 17 183–17 206.

Grimm, R. E. & Phillips, R. J. 1991. Gravity anomalies,
compensation mechanisms, and the geodynamics of
western Ishtar Terra, Venus. Journal of Geophysical
Research, 96, 8305–8324.

Grinspoon, D. H. 1993. Implications of the high D/H
ratio for the sources of water in Venus atmosphere.
Nature, 363, 428–431.

Grosfils, E. B. & Head, J. W. 1994. The global distri-
bution of giant radiating dike swarms on Venus:
implications for the global stress state. Geophysical
Research Letters, 21, 701–704.

Grosfils, E. B., Aubele, J., Crumpler, L., Gregg, T. &
Sakimoto, S. 1999. Volcanism on Venus and Earth’s
seafloor. In: Gregg, T. & Zimbelman, J. (eds) Envi-
ronmental Effects on Volcanic Eruptions: From Deep
Ocean to Deep Space. Plenum, New York, 113–142.

Grosfils, E. B., McGovern, P. J., Gregg, P. M.,
Galgana, G. A., Hurwitz, D. M., Long, S. M. &
Chestler, S. R. 2013. Elastic models of magma reser-
voir mechanics: a key tool for investigating planetary
volcanism. In: Platz, T., Massironi, M., Byrne,
P. K. & Hiesinger, H. (eds) Volcanism and Tectonism
Across the Inner Solar System. Geological Society,
London, Special Publications, 401. First published
online December 11, 2013, http://dx.doi.org/10.
1144/SP401.2

Guallini, L., Pauselli, C., Brozzetti, F. & Marinan-

geli, L. 2014. Physical modelling of large-scale defor-
mational systems in the South Polar Layered Deposits
(Promethei Lingula, Mars): new geological constraints
and climatic implications. In: Platz, T., Massironi,
M., Byrne, P. K. & Hiesinger, H. (eds) Volcanism
and Tectonism Across the Inner Solar System. Geologi-
cal Society, London, Special Publications, 401. First
published online April 25, 2014, http://dx.doi.org/
10.1144/SP401.13

Guest, J. E. & Murray, J. B. 1976. Volcanic features
of the nearside equatorial lunar maria. Journal of the
Geological Society, London, 132, 251–258.

Guest, J. E. & Stofan, E. R. 1999. A new view of the stra-
tigraphic history of Venus. Icarus, 139, 56–66.

Gung, Y., Panning, M. & Romanowicz, B. 2003. Global
anisotropy and the thickness of continents. Nature,
422, 707–711.

Gustafson, J. O., Bell, J. F., Gaddis, L. R., Hawke, B.
R. & Giguere, T. A. 2012. Characterization of pre-
viously unidentified lunar pyroclastic deposits using
Lunar Reconnaissance Orbiter Camera data. Journal
of Geophysical Research, 117, E00H25, http://dx.
doi.org/10.1029/2011JE003893

Hagerty, J. J., Lawrence, D. J., Hawke, B. R.,
Vaniman, D. T., Elphic, R. C. & Feldman, W. C.
2006. Refined thorium abundances for lunar red

spots: implications for evolved, nonmare volcanism
on the Moon. Journal of Geophysical Research, 111,
E06002, http://dx.doi.org/10.1029/2005JE002592

Hamilton, C. W., Fagents, S. A. & Thordarson, T.
2011. Lava-ground ice interactions in Elysium Plani-
tia, Mars: geomorphological and geospatial analysis
of the Tartarus Colles cone groups. Journal of Geophy-
sical Research, 116, E03004.

Hamilton, V. & Stofan, E. R. 1996. The geomorphology
and evolution of Hecate Chasma, Venus. Icarus, 121,
171–194.

Hansen, V. L. 2006. Geological constraints on crustal
plateau surface histories, Venus: the lava pond and
bolide impact hypotheses. Journal of Geophysical
Research, 111, E11010.
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seismic data on the state of the deep lunar interior.
Science, 181, 49–51.

Neal, C. R. & Taylor, L. A. 1992. Using Apollo 17
High-Ti Mare Basalts as Windows to the Lunar Man-
tle. Workshop on Geology of the Apollo 17 Landing
Site. Lunar Science Institute, Houston, TX, 40–44.

Neukum, G. & Hiller, K. 1981. Martian ages. Journal of
Geophysical Research, 86, 3097–3121.

Neukum, G. & Ivanov, B. A. 1994. Crater size distri-
butions and impact probabilities on Earth from lunar,
terrestrial-planet, and asteroid cratering data. In:
Gehrels, T. (ed.) Hazard Due to Comets and Aster-
oids. University of Arizona Press, Tucson, AZ,
359–416.

Neukum, G., König, B. & Arkani-Hamed, J. 1975a. A
study of lunar impact crater size distributions. The
Moon, 12, 201–229.

Neukum, G., König, B., Fechtig, H. & Storzer, D.
1975b. Cratering in the Earth–Moon system. Conse-
quences for age determination by crater counting.
Proceedings of Lunar and Planetary Science, 6,
2597–2620.

Neukum, G., Ivanov, B. A. & Hartmann, W. K. 2001.
Cratering records in the inner solar system in rela-
tion to the lunar reference system. Space Science
Reviews, 96, 55–86.

Neukum, G., Jaumann, R. et al. 2004. Recent and
episodic volcanic and glacial activity on Mars revealed
by the High Resolution Stereo Camera. Nature, 432,
971–979.

Neukum, G., Basilevsky, A. T. et al. 2010. The geologic
evolution ofMars: episodicity of resurfacing events
and ages from cratering analysis of image data and
correlation with radiometric ages of Martian meteor-
ites. Earth and Planetary Science Letters, 294,
204–220.

Nikolaeva, O., Ivanov, M. & Borozdin, V. 1992. Evi-
dence on the crustal dichotomy of Venus. In: Venus
Geology, Geochemistry, and Geophysics – Research
Results from the USSR. University of Arizona Press,
Tucson, AZ.

Nimmo, F. & McKenzie, D. 1998. Volcanism and tec-
tonics on Venus. Annual Review of Earth and Plane-
tary Sciences, 26, 23–51.

Nittler, L. R., Starr, R. D. et al. 2011. The major-
element composition of Mercury’s surface from
MESSENGER X-Ray Spectrometer. Science, 333,
1847–1850.

Oberbeck, V. R., Quaide, W. L., Arvidson, R. E. &
Aggarwal, H. R. 1977. Comparative studies of
lunar, Martian, and Mercurian craters and plains.
Journal of Geophysical Research, 82, 1681–1698.

Ohtake, M., Matsunaga, T. et al. 2009. The global
distribution of pure anorthosite on the Moon. Nature,
461, 236–240, http://dx.doi.org/10.1038/nature08317
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